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This Topic . . .

This Topic begins by introducing the gradient of a curve. This concept was in-
vented by Pierre de Fermat in the 1630s and made rigorous by Sir Issac Newton and
Gottfried Wilhelm von Leibniz in the 1670s.

The process of finding the gradient by algebra is called differentiation. It is a
powerful mathematical technique and many scientific discoveries of the past three
centuries would have been impossible without it. Newton used these ideas to discover
the Law of Gravity and to find equations describing the orbits of the planets around
the sun.

Differentiation remains a powerful technique today and has many theoretical and
practical applications.

The Topic has 2 chapters:

Chapter 1 explores the rate at which quantities change. It introduces the gradient
of a curve and the rate of change of a function. Examples include motion and
population growth.

Chapter 2 introduces derivatives and differentiation. Derivatives are initially found
from first principles using limits. They are then constructed from known re-
sults using the rules of differentiation for addition, subtraction, multiples,
products, quotients and composite functions. Implicit differentiation is also
introduced. Applications include finding tangents and normals to curves.
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Chapter 1

Gradients of Curves

1.1 Describing change

How can we describe the rate at which quantities change?

Example

constant
velocity

gradient
of a line

The distance-time graph below shows the distance travelled by a car that has
a constant velocity of 15 m/s.1

1   
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1.1 Describing change 

How can we describe the rate at which quantities change? 

Example 

The graph below shows the distance travelled by a car that has a constant velocity of 15 m/s.
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We can see that the car travelled 15m after 1 second, 30m after 2 seconds, .... 

The velocity of a car describes how distance changes with time. When the velocity is constant, it 

can be calculated using the ratio:
2
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This ratio is equal to the gradient of the line on the time-distance graph above, so the constant 

velocity of the car can also be thought of as the gradient of a line. 

Observe: 

• the gradient of a straight line is the same between any two points on the line 

• the velocity of the car  above is the same between any two points on the line 

• the time-distance graph provides information about velocity 

Here is the time-velocity graph for the same car ... 
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Velocity measures how distance changes with time. You can see that the car
travelled 15m in 1 second, 30m in 2 seconds, etc. When the velocity is constant,
it is calculated using the ratio:2

∆ distance

∆ time
=

change in distance

change in time
= 15 m/s

This ratio is the gradient of the line on the graph, so the constant velocity of
the car can also be thought of as the gradient of a line.

1 meters per second
2 ∆ is an uppercase Greek letter called “Delta”. It is used in mathematics to mean ‘change in’.

1



2 CHAPTER 1. GRADIENTS OF CURVES

Observe:

• the distance-time graph provides information about velocity

• the distance-time graph is a straight line with gradient 15

• The velocity of the car is 15 m/s

Example

velocity
acceleration

Here is the velocity-time graph for the same car ...

1   
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1.1 Describing change 

How can we describe the rate at which quantities change? 

Example 

The graph below shows the distance travelled by a car that has a constant velocity of 15 m/s.
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We can see that the car travelled 15m after 1 second, 30m after 2 seconds, .... 

The velocity of a car describes how distance changes with time. When the velocity is constant, it 

can be calculated using the ratio:
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This ratio is equal to the gradient of the line on the time-distance graph above, so the constant 

velocity of the car can also be thought of as the gradient of a line. 

Observe: 

• the gradient of a straight line is the same between any two points on the line 

• the velocity of the car  above is the same between any two points on the line 
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Acceleration measures how velocity changes with time. When the acceleration
is constant, it can be calculated using the ratio:

∆ velocity

∆ time
=

change in velocity

change in time
= 0 m/s2

Observe:

• the velocity-time graph provides information about acceleration

• the velocity-time graph is a horizontal line with gradient 0

• the acceleration of the car is 0 m/s2.

Example

shape
of graph

vertical
velocity

This is the height-time graph of an experimental rocket.

2  Differentiation 

 

Example 

This is the time-height graph for an experimental rocket.  

 

 

 

 

 

 

 

 

 

The rocket climbs up to about 120 m then returns to the ground again. The time-height graph is 

not a straight line, so the change in height with time is not constant.  

 

What does the graph tell us about the velocity of the rocket? Can the velocity be found from the 

graph? These types of questions motivated the discoveries of Fermat, Newton and Leibniz. 

 

The graph shows that between t = 0 and t = 1 the rocket climbs 44 m, but between t = 4 and t = 5 

it only climbs 5m. So the shape of the curve shows that the rocket slows down as it climbs to its 

maximum height at t = 5, and that it speeds up it again as it falls to the ground.  

 

Example 

This time-population graph models the growth of aphids on broad bean plants over 60 days. 

 

 

 

 

 

 

 

 

 

The graph that the aphid population grows slowly for the first 20 days, grows faster from day 20 

to day 40, then grows more slows again and levels off. 

The graph shows that the population is growing faster at day 30 than it is at day 50. But exactly 

how fast is the population growing on each of these days?  

This is another example of the type of question that led to the invention of differentiation. 

 

0 20 40 60
0

500

1000

time (d) 

 

population 

height (m) 

 

0 5 10
0

50

100

150

time (s) 

 

The rocket climbs to about 120 m and then returns to the ground again. The
graph is curved, so the change in height with time is not constant.

What does the shape of the graph tell us about the vertical velocity of the
rocket? Can the velocity be found from the graph?
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Questions like these motivated Fermat, Newton and Leibniz in their exploration
of the gradient of a curve and led to the invention of differentiation.3

The graph shows that the rocket climbs 44 m between t = 0 and t = 1, but
only 5m between t = 4 and t = 5.

The shape of the curve shows that the rocket slows down as it climbs, until it
reaches its maximum height at t = 5, . . . and that it then speeds up as it falls
to the ground.

Example

population
growth

This population-time graph models the growth of aphids on broad bean plants
over 60 days.

2  Differentiation 

 

Example 

This is the time-height graph for an experimental rocket.  

 

 

 

 

 

 

 

 

 

The rocket climbs up to about 120 m then returns to the ground again. The time-height graph is 
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The graph that the aphid population grows slowly for the first 20 days, grows faster from day 20 

to day 40, then grows more slows again and levels off. 
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The graph shows that the aphid population grows slowly for the first 20 days,
grows faster from day 20 to day 40, then grows more slows again and finally
levels off.

The graph shows that the population is growing faster at day 30 than it is at
day 50. But exactly how fast is the population growing on each of these days?

This is another example of the type of question that led to the invention of
differentiation.

Exercise 1.1

1. A car starting from rest travelled the first 300m in 10 seconds at a constant
velocity.

(a) Represent this on a distance-time graph.

(b) What is the constant velocity of the car?

(c) Draw the corresponding velocity-time graph

(d) What is the acceleration of the car?

3 Pierre de Fermat (1601 - 1665), Sir Isaac Newton (1643 - 1727), Gottfried Wilhelm von Leibniz
(1646 - 1716)
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1.2 Gradients of curves

How can we determine the vertical velocity of an experimental rocket from its height-
time graph? What is its velocity at exactly t = 2 seconds?

2  Differentiation 

 

Example 

This is the time-height graph for an experimental rocket.  

 

 

 

 

 

 

 

 

 

The rocket climbs up to about 120 m then returns to the ground again. The time-height graph is 

not a straight line, so the change in height with time is not constant.  
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The graph shows that between t = 0 and t = 1 the rocket climbs 44 m, but between t = 4 and t = 5 

it only climbs 5m. So the shape of the curve shows that the rocket slows down as it climbs to its 

maximum height at t = 5, and that it speeds up it again as it falls to the ground.  
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The graph that the aphid population grows slowly for the first 20 days, grows faster from day 20 

to day 40, then grows more slows again and levels off. 

The graph shows that the population is growing faster at day 30 than it is at day 50. But exactly 

how fast is the population growing on each of these days?  

This is another example of the type of question that led to the invention of differentiation. 
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The second question can be approached by estimating the velocity near t = 2 :

• at t = 2, the rocket’s height is 78.4 m, and at t = 3 the height is h = 102.9 m,
so the vetrical velocity between t = 2 and t = 3 is approximately:

∆ height

∆ time
=

change in height

change in time
=

102.9− 78.4

3− 2
= 24.5 m/s

. . . the velocity at t = 2 is about 24.5 m/s.

• at t = 2.5 the height is 91.8 m,
so the vertical velocity between t = 2 and t = 2.5 is approximately:

∆height

∆height
=

change in height

change in height
=

91.8− 78.4

2.5− 2
= 26.8 m/s

. . . so 26.8 m/s is a better estimate of the velocity at t = 2.

Smaller time intervals will give better estimates of the velocity at t = 2.

The table below shows how the estimate improves when smaller time intervals are
used.

Interval ∆time ∆height
∆height
∆time

t = 2 (h = 78.4)→ t = 3.0 (h = 102.9) 1 24.5 24.5
→ t = 2.5 (h = 91.9) 0.5 13.4 26.8
→ t = 2.1 (h = 81.3) 0.1 2.9 29
→ t = 2.01 (h = 78.7) 0.01 0.3 30

You can see that the velocity of the rocket at t = 2 will be very close to 30 m/s.
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These estimates can be interpreted as gradients:4  Differentiation 

 
 

 

 

 

 

 

 

 

 

 

 

The first velocity estimate was 24.5. This is the gradient of the line from (2, 78.4) to (3, 102.9). 

The second estimate was 26.8. This is the gradient of the line from (2, 78.4) to (2.5, 91.8). 

The third was 30. This is the gradient of the line from (2, 78.4) to (2.01, 78.7).  It is very close to 

the gradient of the tangent line at (2, 78.4).  

... the velocity at t =2 is the gradient of the curve at t = 2. 

Terminology 

• The tangent line to a curve is a straight line that just touches the curve. 

• The gradient of a curve at a point is the gradient of the tangent line that touches the 

curve at that point  

The gradient of a curve at a point is the gradient of the tangent line. 

This measures the rate of change of quantity at the point. 

Example 

The growth rate of the aphid population at a specific time is equal to the gradient of the curve on 

the time-population graph. This knowledge can be used to describe how the population is 

changing over time.  
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The first estimate of the velocity was 24.5 m/s.
. . . it is the gradient of the line from (2, 78.4) to (3, 102.9).

The second estimate was 26.8 m/s.
. . . it is the gradient of the line from (2, 78.4) to (2.5, 91.8).

The third estimate was 30 m/s.
. . . it is the gradient of the line from (2, 78.4) to (2.01, 78.7), and is very close
to the gradient of the line that just touches the curve at (2, 78.4).

The velocity of the rocket at t = 2 is equal to the gradient of the straight line that
just touches the curve at t = 2.

Terminology

• A straight line that just touches a curve is called a tangent line.

• The gradient of a curve at a point is the gradient of the tangent line to the
curve at that point.

The gradient of the curve at a point (or the gradient of the tangent line)
measures the rate of change of the quantity at the point.
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Example

changing
growth rate

The growth rate of an aphid population can be found from the gradient of the
population-time graph. This observation is used to describe how the population
changes over 60 days.

4  Differentiation 

 
 

 

 

 

 

 

 

 

 

 

 

The first velocity estimate was 24.5. This is the gradient of the line from (2, 78.4) to (3, 102.9). 

The second estimate was 26.8. This is the gradient of the line from (2, 78.4) to (2.5, 91.8). 

The third was 30. This is the gradient of the line from (2, 78.4) to (2.01, 78.7).  It is very close to 

the gradient of the tangent line at (2, 78.4).  

... the velocity at t =2 is the gradient of the curve at t = 2. 

Terminology 

• The tangent line to a curve is a straight line that just touches the curve. 

• The gradient of a curve at a point is the gradient of the tangent line that touches the 

curve at that point  

The gradient of a curve at a point is the gradient of the tangent line. 

This measures the rate of change of quantity at the point. 

Example 

The growth rate of the aphid population at a specific time is equal to the gradient of the curve on 

the time-population graph. This knowledge can be used to describe how the population is 

changing over time.  
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In the graph . . .

• the gradient of the curve increases from t = 0 to t = 30, so
. . . the growth rate increases from t = 0 to t =30

• the gradient of the curve stops increasing at t = 30, begins to decrease
and becomes close to zero after t = 50, so
. . . the growth rate stops increasing at t = 30, begins to decrease and
becomes close to zero after t = 50.4

Example

changing
velocity

The vertical velocity of an experimental rocket can be found from the gradient
of the height-time graph. When the rocket is climbing the vertical velocity is
positive, and when it is returning the vertical velocity is negative.

 Gradients of curves 5 

 

 

In this graph .... 

• the gradient of the curve increases from t = 0 to t = 30, so 

.... the growth rate of the population increases from t = 0 to t =30 

• the gradient of the curve stops increasing at t = 30, begins to decrease and becomes 

close to zero after t = 50, so 

.... the growth rate of the population stops increasing at t = 30, begins to decrease and 

becomes close to zero after t = 50.
4
 

Example 

The vertical velocity
5
 of the experimental rocket is equal to the gradient of time-height graph. 

 

 

 

 

 

 

 

In this graph .... 

• the gradient to the curve is positive but reducing from t = 0 to t = 5, so 

.... the velocity of the rocket is positive (climbing) and reducing for 0 ! t < 5 

• the gradient of the curve is zero at t = 5, so 

.... the (vertical) velocity is zero at t = 5. 

• the gradient of the curve is negative and growing for 5 < t ! 10 , so 

.... the velocity of the rocket is negative (falling) and growing for 0 ! t < 5 

Here is the time-velocity graph for the rocket: 

 

 

 

 

 

 

 

 

You can see that: 

• the initial velocity is about 50 m/s. 

 

                                                
4
 The size of the population is still increasing even though the growth rate is decreasing. The population levels off as 

the growth rate falls to 0. 
5
 This example only looks at how the height of the rocket changes with time. When the rocket is climbing the 

veloscity is positive, when it is falling the velocity is negative.  
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In this graph . . .

4 The size of the population is increasing even though the growth rate is decreasing. The
population levels off as the growth rate falls to 0.
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• the gradient of the curve is positive but reducing from t = 0 to t = 5, so
. . . the velocity is positive (climbing) and decreasing for 0 ≤ t < 5.

• the gradient of the curve is zero at t = 5, so
. . . the (vertical) velocity is zero at t = 5.

• the gradient of the curve is negative and growing for 5 < t ≤ 10 , so
. . . the velocity is negative (returning) and increasing for 0 ≤ t < 5.

Example

vertical
velocity &

acceleration

Here is the velocity-time graph for the same rocket:

 Gradients of curves 5 
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You can see that: 

• the initial velocity is about 50 m/s. 
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You can see that . . .

• the initial velocity is about 50 m/s

• the velocity is positive for 0 ≤ t < 5 (climbing)

• the velocity is zero at t = 5 (maximum height reached)

• the velocity is negative for 5 < t ≤ 10 (returning)

• the velocity is changing at a constant rate which is equal to the gradient
of the line (−9.8)

Acceleration measures how velocity changes with time. In this example, the
rocket has a vertical acceleration of −9.8m/s2, due to the downward pull of
gravity.

Example

change in
height with

distance

The experimental rocket followed a parabolic path. The height (metres) is
given on the y-axis, and the distance travelled (metres) on the x-axis.

6  Differentiation 

• the velocity is positive for 0 ! t < 5 (climbing) 

• the velocity is zero at t = 5 (maximum height reached) 

• the velocity is negative for 5 < t ! 10 (falling) 

• the velocity is changing at a constant rate equal to the gradient of the line (- 9.8) 

The rate of change of velocity with time is acceleration. In this example the downward force of 

gravity on the rocket produced an acceleration of - 9.8 m/s
2
. 

Example 

The experimental rocket followed a parabolic path. The height (metres) is given on the y-axis of 

the graph below, and the distance travelled (metres) on the x-axis. 

 

 

 

 

 

 

 

In this distance-height graph, the gradient of the curve can be interpreted as the rate at which 

height changes with distance travelled. 
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In this height-distance graph, the gradient of the curve is interpreted as the
rate at which height changes with distance travelled.
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Exercise 1.2

1. Sketch the graph of y = x2 for 0 ≤ x ≤ 2, then draw chords5 from P (1, 1) to
the points Q(0.5, 0.25) and R(1.5, 2.25).

(a) What are the gradients of the chords

i. PQ

ii. PR

(b) Show the tangent to y = x2 at x = 1 has gradient between 1.5 and 2.5 .

(c) By selecting other chords on y = x2, estimate the gradient of the tangent
to y = x2 at x = 1 to within ±0.1.

2. Match up the graphs below. Each graph on the right shows the gradient of a
curve on the left. Hint: Observe where the gradients to the curves are constant,
positive, negative, and zero.

(a) (i)

 Gradients of curves 7 

 

 

Problems 1.2 

Match up the graphs below. Each graph on the right shows the gradient of a curve on the left. 

(Hint: Where are the gradients to the curves constant, positive, negative, zero?) 
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(Hint: Where are the gradients to the curves constant, positive, negative, zero?) 
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5A chord is a line segment joining two points on a curve.
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1.3 The rate of change of a function

Velocity measures how distance changes with time. Growth rate measures how a
population changes with time. How can we measure the way a function f(x) changes
with x ?

The graph below shows how a function f(x) might change between x = a and x = b.

8  Differentiation 

 

1.3  The rate of change of a function 

The velocity of a car descibes how distance changes with time. The population growth rate 

describes how a population changes with time. How can we describe the way a general function 

f (x) changes with x ? 

 

 

 

 

 

 

 

 

 

 

The average rate of change of the function f (x)  in the interval from a  to b  is 

!f

!x
=
f (b) " f (a)

b " a
. 

# This can be interpreted as the slope of the chord between a, f (a)( )  and b, f (b)( ) . 

The average rate of change across an interval is an approximation to the rate of change of a 

function at a point (instantaneous rate of change).
6
 

As the width of the interval (a, b)decreases, the approximation  

!f

!x
=
f (b) " f (a)

b " a
 

approaches the instantaneous rate of change of f (x) at the point x = a . 

# This can be interpreted as the slope of the tangent line to the graph of f (x)  at x = a . 

Problems 1.3 

1. Sketch the graph of y = x2 for 0 ! x ! 4  and draw on it chords from P(1, 1)  to each of the 

points 
 
Q(2, 4) , R(3, 9)  and 

 
S(4, 16) . 

2. What is the average rate of change of x
2

 between 

i.  x =  1 and  x =  4  

ii.  x =  1 and  x =  3  

iii.  x =  1 and  x =  2  

3. By considering the average rate of change, estimate instantaneous rate of change of x
2

 at 
x = 1  to within 0.1.

                                                
6
 The word instantaneous is used describe to the rate of change of f (x)with respect to x even though the variable x 

may not be a time variable. 

b ! a  

f (b) ! f (a)

 

a  b

 

f (x)

 

x 

f (a)

 

f (b)

 

The average rate of change of the function f(x) from x = a to x = b is

∆f

∆x
=

change in f(x)

change in x
=

f(b)− f(a)

b− a
.

This is equal to the gradient of the chord6 from (a, f(a)) to (b, f(b).

As the width of the interval [a, b] decreases, the approximation

∆f

∆x
=

f(b)− f(a)

b− a
.

becomes closer to the rate of change of f(x) at x = a.7

You can see that the rate of change of f(x) at x = a is equal to the gradient of the
tangent line to the graph of f(x) at x = a.

The gradient of the curve y = f(x) at a point x = a (the gradient of the
tangent line) measures the rate of change of the function f(x) with respect
to x at the point x = a.

The phrase instantaneous rate of change is often used to emphasise that the rate
of change of the function f(x) is for a specific value of x. This contrasts with the
previous use of average rate of change.

6 A chord is a line segment joining two points on a curve.
7 The phrase rate of change is used describe to the change in f(x) as x changes, even though x

may not be a time variable.
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Exercise 1.3

1. Sketch the graph of y = x2 for 0 ≤ x ≤ 4 and draw the chords from P (2, 4) to
the points Q(1, 1), R(3, 9) and S(4, 16).

2. What is the average rate of change of x2 between

(a) x = 1 and x = 2

(b) x = 2 and x = 3

(c) x = 2 and x = 4

3. Use your answer to question 2 to deduce that the rate of change of x2 with
respect to x at x = 2 is between 3 and 5.

4. Estimate the rate of change of x2 with respect to x at x = 2 to within ±0.1.

5. The graph of y = x2 + 1 can be obtained by shifting the graph of y = x2

upwards by one unit. Use this together with your answer to question 4 to
estimate the instantaneous rate of change of x2 + 1 with respect to x at x = 2.



Chapter 2

Differentiation

The gradient of a curve shows the rate at which a quantity changes on a graph.

If the quantity is described by a function1 then the rate of change of the function
can be found directly by algebra without drawing a graph. This process is called
differentiation. We call the rate of change of a function the derivative of the function.

There are two ways of finding derivatives of functions:

• from first principles, following the footsteps of the early mathematicians. This
is mainly of historical interest, however it introduces the important idea of a
limit and explains the notation used in differentiation.

• constructing derivatives from known results using the rules of differentiation.

2.1 From first principles ...

The gradient at a point on a curve can be found exactly by algebra when the equation
of the curve is known.

This section shows how the early mathematical explorers calculated gradients and
derivatives.

Example

from
first

principles

To find the gradient of the parabola y = x2 at the point P (1, 1) :

1. Find the gradient of the line through P (1, 1) and a second point Q on
the parabola. (See diagram on page 12.)

We take the second point to be Q(1 + h, (1 + h)2) where h stands for a
number.2

1 A function is a formula that has only one value for each input value, for example y = x2.
The function keys on a calculator give one value for each input value.

2 If x = 1 + h, then y = x2 = (1 + h)2.

11
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2   
Differentiation 
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The gradient of a curve shows the rate at which a quantity changes on a graph.  

If the quantity is described by a function
6
 then the rate of change can be found directly by 

algebra without needing to draw a graph. This process is called differentiation and we call the 

rate of change the derivative of the function. 

There are two ways of finding derivatives of functions: 

• from first principles, following the footsteps of the early mathematicians 

• constructing derivatives from known results 

 

 

2.1 From first principles ...  

The gradient at a point on a curve can be found exactly by algebra when the equation of the 

curve is known. 

This section shows how the early mathematical explorers calculated gradients and derivatives. 

While this is mainly of historical interest, it introduces the important idea of a limit. 

Example 

To find the gradient of the parabola y = x2  at the point (1, 1) : 

1. First find the gradient of the line going through (1, 1) and a second point on the parabola.  

The second point is taken to be (1 + h, (1 + h)
2
) where h stands for a number. 

 

 

 

 

 

 

 

When h is a very small number, the line going through the two points will be very close to 

the tangent line at the point (1, 1). 

 

2. The gradient of the line from (1, 1) to (1 + h, (1 + h)
2
) is 

! y

! x
=
(1+ h)2 "1

1+ h "1
 

                                                
6
 A function is a formula that has only one value for each input value. All the function keys on a scientific calculator 

give one value from each input value.  

-2 0 2

2

4

6

8

• 

• 

(1, 1) 

(1 + h, (1 + h)
2 

) 

1 1 + h 

P

Q

You can see that when h is a very small number, the line through the
points P and Q will be very close to the tangent line at (1, 1).

2. The gradient of the line from P (1, 1) to Q(1 + h, (1 + h)2) is

∆y

∆x
=

(1 + h)2 − 1

1 + h− 1

=
(1 + 2h + h2)− 1

1 + h− 1

=
2h + h2

h

=
h(2 + h)

h
= 2 + h . . . as long as h 6= 0.

3. When h is very small, the gradient

∆y

∆x
= 2 + h

will be very close to the gradient of the tangent line at (1, 1).

We can deduce that ....

as h becomes smaller and smaller,
∆y

∆x
becomes closer to 2.

This shows that the gradient of the parabola y = x2 at (1, 1) is exactly 2 .

Alternatively, we can say the derivative of the function x2 at x = 1 is 2.

When the early mathematicians explored differentiation they discovered some simple
relationships between functions and their derivatives that we can use to calculate
derivatives quickly.

For example, the derivative of the function x2 is always equal to 2x for every value
of x. This is shown in the next example, using the method of first principles.
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Example

gradient
of y = x2

at x = a

To find the gradient of the parabola y = x2 at x = a means to find the gradient
at the point (a, a2) on the parabola:

1. Find the gradient of the line through P (a, a2) and a second point Q on
the parabola.

We take the second point to be Q(a + h, (a + h)2) where h stands for a
number.3

2   
Differentiation 
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The gradient of a curve shows the rate at which a quantity changes on a graph.  

If the quantity is described by a function
6
 then the rate of change can be found directly by 

algebra without needing to draw a graph. This process is called differentiation and we call the 

rate of change the derivative of the function. 

There are two ways of finding derivatives of functions: 

• from first principles, following the footsteps of the early mathematicians 

• constructing derivatives from known results 

 

 

2.1 From first principles ...  

The gradient at a point on a curve can be found exactly by algebra when the equation of the 

curve is known. 

This section shows how the early mathematical explorers calculated gradients and derivatives. 

While this is mainly of historical interest, it introduces the important idea of a limit. 

Example 

To find the gradient of the parabola y = x2  at the point (1, 1) : 

1. First find the gradient of the line going through (1, 1) and a second point on the parabola.  

The second point is taken to be (1 + h, (1 + h)
2
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When h is a very small number, the line going through the two points will be very close to 

the tangent line at the point (1, 1). 

 

2. The gradient of the line from (1, 1) to (1 + h, (1 + h)
2
) is 
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-2 0 2

2

4

6

8

• 

• 

  
(a, a

2
)

 

  
(a + h, (a + h)2 )

 

 a   a + h  

P

Q

When h is a very small number, the line going through the points P and
Q will be very close to the tangent line at (a, a2).

2. The gradient of the line from P (a, a2) to Q(a + h, (a + h)2) is

∆y

∆x
=

(a + h)2 − a2

a + h− a

=
(a2 + 2ah + h2)− a2

a + h− a

=
2ah + h2

h

=
h(2a + h)

h
= 2a + h . . . as long as h 6= 0

3. When h is very small, the gradient

∆y

∆x
= 2a + h

will be very close to the gradient of the tangent line at (a, a2).

We can deduce that ....

as h becomes smaller and smaller,
∆y

∆x
becomes closer to 2a.

3If x = a + h, then y = x2 = (a + h)2.
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This shows that the gradient of the parabola y = x2 at (a, a2) is exactly 2a.

Alternatively, we can say the derivative of the function x2 at x = a is 2a.

Note: Instead of saying

the derivative of x2 at x = a is 2a,

we normally just say
the derivative of x2 is 2x,

So when x = 1, the derivative of x2 is 2, . . . and so on

See Appendix A for more examples of differentiation using first principles.

2.1.1 Terminology and Notation

(a) The argument that . . .

as h becomes smaller and smaller,
∆y

∆x
becomes closer to 2a.

is called ‘taking the limit’, and is expressed more precisely by . . .

as h approaches 0,
∆y

∆x
approaches 2a.

(b) An arrow is commonly used to represent the word ‘approaches’, e.g.

as h→ 0,
∆y

∆x
→ 2a.

. . . which is read as

as h approaches 0,
∆y

∆x
approaches 2a.

(c) This limit can be written more compactly as . . .

lim
h→0

∆y

∆x
= 2a

. . . which is read as

the limit, as h approaches 0, of
∆y

∆x
is 2a.

(d) The symbol lim
h→0

∆y

∆x
in (c) is the origin of the traditional symbol

dy

dx
that is

used to represent a derivative. Instead of writing

the derivative of y = x2 is 2x
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we just write
dy

dx
= 2x or

d

dx
(x2) = 2x

These are read aloud as

dee y dee x equals 2x or dee dee x of x squared equals 2x

This notation is adjusted when different variables are used. For example, if
the relationship between population (P ) and time (t) is given by P = t2, then
the population growth rate is 2t and we can write either

dP

dt
= 2t or

d

dt
(t2) = 2t

(d) These traditional symbols are clumsy to type without special software and are
often replaced by dashes. For example, we can write

y′ or y′(x) instead of
dy

dx
and P ′ or P ′(t) instead of

dP

dt

This is particularly convenient when evaluating derivatives for specific values
of the variables. For example,

the derivative of y = x2 at x = 1 is 2

can be written briefly as
y′(1) = 2,

. . . which is read aloud as either

the derivative of y at 1 is equal to 2 or y dash at 1 is equal to 2

and

the population growth rate when t = 10 is 100

can be written as P ′(10) = 100.

. . . and read aloud as either

the derivative of P at 10 is equal to 100 or P dash at 10 is equal to 100

Note: All of these notations will be used in this Topic.
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Exercise 2.1

1. Find the derivative of y = x2 at x = 3 from first principles by:

(a) sketching the parabola y = x2

(b) marking the points R(3, 9) and S(3 + h, (3 + h)2) on it, where h is some
number.

(c) finding the gradient
∆y

∆x
of the line RS

(d) evaluating the limit lim
h→0

∆y

∆x

2. Find the derivative of y = x2 − 2x at x = 2 from first principles by:

(a) sketching the parabola y = x2 − 2x

(b) marking the points U(2, 0) and V (2 + h, (2 + h)2− 2(2 + h)) on it, where
h is some number.

(c) finding the gradient
∆y

∆x
of the line UV

(d) evaluating the limit lim
h→0

∆y

∆x

3. If y = x2 − 2x, then it is known that
dy

dx
= 2x− 2. Use this to:

(a) find the gradient of the parabola at the y-intercept

(b) find the equation of the tangent line at the y-intercept

4. A fish population is increasing according to the quadratic model4

P (t) = 600t− t2 fish/day.

(a) Sketch this model for 0 ≤ t ≤ 600.

If P ′(t) = 600− 2t:

(b) find the population growth rate when t = 100

(c) find when the population growth rate is zero

(d) find the maximum size of the population

4formulae representing real life situations are frequently called models.
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2.2 Constructing derivatives . . .

The early mathematicians discovered that

• the derivatives of basic functions have patterns that can be easily remembered

• the derivative of any function can be constructed from the derivatives of basic
functions

2.2.1 Powers

The most common functions are powers, and their derivatives have this pattern ...5

If y = xa for any power a, then
dy

dx
= axa−1.

Example

derivatives
of powers

a. If y = x2, then
dy

dx
= 2x2−1 = 2x1 = 2x

b. If y = x100 , then
dy

dx
= 100x100−1 = 100x99

c. If y =
√
x , then y = x1/2 and

dy

dx
=

1

2
x1/2−1 =

1

2
x−1/2 or

1

2
√
x

d. If y =
1

x
, then y = x−1 and

dy

dx
= −1x−1−1 = −x−2 or − 1

x2

Example

velocity v
distance s

time t

The displacement s (meters) travelled by a car in time t seconds is given by
the model

s = t2.

What is the velocity of the car after 5 seconds?

Answer:
The velocity is the rate of change in distance by time:

v =
ds

dt
= 2t2−1 = 2t

When t = 5, v = 2t = 10m/s.

5Any variables can be used, not just x’s and y’s.
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There are two powers that occur frequently and whose derivatives are worth mem-
orising: 1 (= x0) and x (= x1) .

If y = 1 (= x0) , then
dy

dx
= 0. If y = x (= x1) , then

dy

dx
= 1.

Exercise 2.2.1

1. Differentiate the following functions

(a) y = x20

(b) y =
1

x2

(c) v = u3

(d) v =
1√
u

2. What is h′(2) if h(t) = t4?

3. Use differentiation to find the gradient of the curve y = x3 at (1,1).

 Differentiation  11 

 

 

Problems 2.2.1 

1. Differentiate the following functions 

a. y = x
20  

b. y =
1

x
2

 

c. u = v
3

 

d. u =
1

v
 

2. What is !h (2) if h(t) = t4 ? 

3. Use differentiation to find the gradient of the curve y = x3  at (1, 1). 
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8 
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2.2.2 Polynomials

Many mathematical functions are built from simpler functions such as powers. We
use this to construct their derivatives.

The general form of a polynomial of degree n in x is

axn + bxn−1 + . . . + dx + e ,

where a, b, . . . , d, e are numbers. It is constructed by adding or subtracting multiples
of powers of a single variable (x in this case), and a constant term.

It can be differentiated by using the following rules:

Rule 1 (constants)
The derivative of a constant is zero.

f(x) = c =⇒ f ′(x) = 0

Rule 2 (multiples)
The derivative of a constant multiple is the multiple of the derivative.

y = cf(x) =⇒ y′ = cf ′(x)

Rule 3 (sums)
The derivative of a sum of terms is the sum of their derivatives.

y = f(x) + g(x) + . . . =⇒ y′ = f ′(x) + g′(x) + . . .

Example

applying the
rules for

differentiation

1. If y = 100x2, then by rule 2

y′ = 100× 2x = 200x

2. If y = x2 + 2x + 3, then by rules 3 and 2

y′ = 2x + 2× 1 + 0 = 2x + 2.

3. If y = (x + 3)(x + 7), expand the brackets first, then apply rules 3 and 2

y = (x + 3)(x + 7)
= x2 + 10x + 21

y′ = 2x + 10
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Rule 3 can also be applied to to differences.6 This is because a difference such as
f(x) − g(x) can be rewritten as the sum of f(x) and (−1)g(x). We don’t bother
to write down every detail when differentiating, but take it for granted that Rule 2
and 3 imply that:

the derivative of a sum (or difference) of terms is the sum (or difference) of their
derivatives.

Example

derivatives
of differences

1. If y = −x2 + 2x + 3, then y′ = −2x + 2.

2. If y = x2 − 2x + 3, then y′ = 2x− 2.

3. If y = x2 + 2x− 3, then y′ = 2x + 2.

4. If y = (x + 3)(x− 7), then

y = (x + 3)(x− 7)
= x2 − 4x− 21

y′ = 2x− 4

Example

vertical
velocity

&

maximum
height

The height h (metres) of an experimental rocket after t seconds is given by

h = 49t− 4.9t2 m/s.

12  Differentiation  

 

2.2.2 Polynomials 

To construct the derivatives of more complicated functions, we need to observe how they are 

built up from simpler functions.
10

 

A polynomial is constructed by adding or subtracting multiples of powers of a single variable 

and a constant term, eg. x
2
+ 3x + 2 , x

3
! 6 , .... 

11
 

It can be differentiated by using the following two rules: 

The derivative of a constant term is zero. 

 

When a function is constructed from simple functions by  

• adding or subtracting together multiples of simple functions and a constant term,  

then its derivative can be constructed term-by-term in exactly the same way by 

• adding or subtracting the same multiples of the derivatives of the simple functions 

• then differentiating the constant term as zero 

Example 

a. If y = 3x + 4  , then 
dy

dx
= 3!1+ 0 = 3 . 

b. If s = 20 ! 3t +1.2t
2

 , then 
ds

dt
= 0 ! 3"1+1.2 " 2t

2!1
= !3+ 2.4t . 

c. If f (x) = (x +1)(x ! 3)  , then f (x) = x2 ! 2x ! 3  and !f (x) = 2x
2"1

" 2 #1" 0 = 2x "1 . 

 

Example 

The height h (metres) of an experimental rocket after t (seconds) is given by h = 49t ! 4.9t
2

.  

 

                                                
10

 This module covers powers and polynomials only. 
11

 See Appendix A2 

height (m) 

150 

 

time (s) 

 0 5 10

0

50

100

150

h = 49t ! 4.9t
2  

122.5 m 

dh

dt
= 0  

The vertical velocity (rate of change of height with time) is

dh

dt
= 49× 1− 4.9× 2t1 = 49− 9.8tm/s

At t = 0, the initial velocity is 49− 9.8× 0 = 49m/s.
At t = 2, the velocity is 49− 9.8× 2 = 29.4m/s.

6In mathematics, we use the smallest number of rules that are necessary.
This makes it easier to see how they can be altered or extended when exploring new situations.
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The rocket reaches its maximum height when its vertical velocity is 0 m/s.
This occurs when

dh

dt
= 49− 9.8t = 0 =⇒ t =

49

9.8
= 5 s

The maximum height reached by the rocket is

h(5) = 49× 5− 4.9× 52 = 122.5m

Example

square
roots

If y = 2− 3
√
x, then

y = 2− 3
√
x

= 2− 3x1/2

y′ = 0− 3× 1
2
x1/2−1

= −3

2
x−1/2

= − 3

2
√
x

Note. The final line uses the same notation as in original question, a square
root symbol rather than a half power.

Exercise 2.2.2

1. Differentiate the following functions

(a) y = 3x3 − 2x + 120

(b) y = 20(x + 2)(x− 5)

(c) y = 2(x + 1)2 + 10

(d) y = 1 +
1

x

2. What is the gradient of the parabola y = (x− 1)(x− 3) at (1, 0) and (3, 0)?

3. Repeat the example of the experimental rocket above, assuming that the height
is given by

h(t) = 98t− 4.9t2.
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2.2.3 Products and quotients

When functions are built from the products and quotients of simpler functions, we
can use the following rules for constructing their derivatives.

Rule 4 (products)
The derivative of a product is the derivative of the first function multiplied by
the second function, plus the first function multiplied by the derivative of the
second function.

y = f(x)g(x) =⇒ y′ = f ′(x)g(x) + f(x)g′(x)

Example

products
f ′g + fg′

(a) If y = (x + 1)(x2 + 2), then

y′ = 1× (x2 + 2) + (x + 1)× 2x
= 3x2 + 2x + 3

(b) If f(x) = 15− 3(x + 1)(x2 + 2), then

f ′(x) = 0− 3[1× (x2 + 2) + (x + 1)× 2x]
= −3(x2 + 2x + 3)

Exercise 2.2.3

1. Use the product rule to differentiate the following

(a) y = x2(2x− 1)

(b) y = (x + 1)(x3 + 3)

(c) y = (x3 + 6x2)(x2 − 1) + 20

(d) u = (7x + 3)(2− 3x) + (x + 3)2

(e) u = 80(x2 + 7x)(x2 + 3x + 1)

(f) f(x) = 2− (x2 − 5x + 1)(2x + 3)

(g) g(t) = (t +
1

t
)(5t2 − 1

t2
)

(h) h(x) = (x2 + 1)(3x− 1)(2x− 3)
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Rule 5 (quotients)
The derivative of a quotient is the derivative of the numerator multiplied by
the denominator, less the numerator multiplied by the derivative of the de-
nominator, all divided by the square of the denominator.

y =
f(x)

g(x)
=⇒ y′ =

f ′(x)g(x)− f(x)g′(x)

[g(x)]2

Example

quotients
f ′g − fg′

g2

(a) If y =
2x + 1

x + 3
, then

y′ =
2× (x + 3)− (2x + 1)× 1

(x + 3)2

=
5

(x + 3)2

(b) If f(x) =
1

x + 3
, then

f ′(x) =
0× (x + 3)− 1× 1

(x + 3)2

= − 1

(x + 3)2

Exercise 2.2.3

2. Use the quotient rule to differentiate the following

(a) f(x) =
x + 2

x− 1
(b) g(x) =

x2

2x + 1

(c) y =
t

t2 − 3
(d) y =

u2 − 1

u2 + 1

(e) x =
u2 − u + 1

u2 + u + 1
(f) t =

√
x

1− 2x

(g) y =
1

x2 + 1
(h) y =

1

(x + 1)2

3. The density of algae in a water tank is equal to
n

V
, where n is the number

of algae and V is the volume of the water in the tank. If n and V vary with
time t according to the formulas n =

√
t and V =

√
t + 1 , calculate the rate

of change of the density.
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2.2.4 Composite functions and the chain rule

A function like y = (x2 + 1)50 can be thought of as being constructed from two
simpler functions using substitution:

y = u50, where u = x2 + 1.

This is an example of a composite function or a ‘function of a function’. Composite
functions are encountered frequently in mathematics, and can be differentiated using
the chain rule.

Here are some more examples of composite functions . . . .

Example

composite
functions

1. If y = (2x− 1)3, then

y = u3, where u = 2x− 1.

2. If y =
√

1− x2, then

y =
√
u, where u = 1− x2.

3. If y =
1

x2 + 4
, then

y =
1

u
, where u = x2 + 1.

In general, the symbols
f((g(x)) or f ◦ g(x)

are used represent the composite function of x obtained by substituting u = g(x)
into f(u). Here g(x) is called the inside function and f(u) is called the outside
function.

Example

‘function
of a

function’

If f(x) = x7 and g(x) = 1− x2, then

(a) f(g(x)) = (1− x2)7

(b) g(f(x)) = 1− (x7)2 = 1− x14
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Exercise 2.2.4

1. If f(x) = x2 − 3 and g(x) = x5, find

(a) f(g(x)) or f ◦ g(x)

(b) g(f(x)) or g ◦ f(x)

2. If f(x) = 3x + 2 and g(x) =
√
x, find

(a) f(g(x))

(b) g(f(x))

3. If h(x) = 2x2 + 1 and j(x) = x3, find

(a) h ◦ j(x)

(b) j ◦ h(x)

4. If l(x) = x2 and m(x) = 1
2
x, find

(a) l(m(x))

(b) m(l(x))

5. Identify outside and inside functions for the composite functions below.7

(a) (x + 1)5

(b)
√
x− 4

(c) (x2 − 3x + 4)2

(d) (3x +
√
x)3

6. If f(x) = x2, g(x) = x + 1 and h(x) = 2x, find f(g(h(x))) or f ◦ g ◦ h(x).

7When there is more than one answer, choose the inside and outside functions that are simplest.
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Rule 6 (the chain rule for composite functions)
The derivative of a composite function is the derivative of the outside function
multiplied by the derivative of the inside function.8

If y = f(u) where u = g(x), then
dy

dx
=

dy

du
× du

dx
.

or alternatively

y = f(g(x)) =⇒ y′ = f ′(g(x))g′(x)

Example

chain rule Differentiate y = (1− x2)7.

Method 1
Put y = u7, where u = 1− x2, then

dy

du
= 7u6 and

du

dx
= −2x

so

dy

dx
=

dy

du
× du

dx
= 7u6 × (−2x)

= −14x(1− x2)6

Method 2
Put y = f(g(x)), where f(x) = x7 and g(x) = 1− x2, then

dy

dx
= f ′(g(x))× g′(x)

= 7(1− x2)6 × (−2x)

= −14x(1− x2)6

Exercise 2.2.4

7. Use the chain rule to differentiate:

(a) (x + 1)4 (b) (x− 1)4 (c) (2− x)3 (d) (4− x)5

(e) (x2 + 1)3 (f) (x2 − 3x)2 (g) (2x2 − 3x + 1)3 (h) (3x− x3)5

8. Differentiate:

(a)
√
x + 1 (b)

√
2x + 3 (c)

√
x2 + 3x− 1 (d)

√
2x− x3

(e)
1√
x− 1

(f)
1√

x2 + 3
(g)

3√
3x2 − 1

(h)
5√

10− x2

8 This is called the chain rule because of the chain of derivatives. In the case of a ‘function
f(x) of a function g(x) of a function h(x)’, the derivative is f ′(g(h(x)))g′(h(x))h′(x).
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9. Use the product, quotient and chain rules to differentiate:

(a) x
√
x + 1 (b) x2

√
2x + 3 (c)

x√
3x + 4

(d)
x2

√
x2 + 1

10. The graph of y =
x√

x4 + 1
is shown below for x ≥ 0.

(a) Find
dy

dx

(b) Solve
dy

dx
= 0

(c) Find the maximum value of
x√

x4 + 1
for x ≥ 0.
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2.2.5 Implicit Differentiation

When functions are explicitly defined in the form y = f(x) they can be differentiated
using the previous rules of differentiation. However functions can also be implicitly
defined.

Example

implicit
relationship

Consider the equation of the circle

x2 + y2 = 4

with centre (0, 0) and radius 2.

This is an example of an implicit relationship
between x and y.

 

2

(0, 0)

Solving this relationship for y gives y explicitly in terms of x, that is as the
subject of a formula with x as the independent variable.

x2 + y2 = 4

y2 = 4− x2

y = ±
√

4− x2

The gradient of the tangent line to x2 + y2 = 4 at (
√

2,
√

2), can now be found
by differentiating y =

√
4− x2, giving . . .

dy

dx
=

−x√
4− x2

=
−
√

2√
4− (

√
2)2

= −1

It may be difficult or impossible to solve an implicit relationship between x and y in
such a way as to make y the subject of a formula with x as the independent variable.

In these cases we use the technique of implicit differentiation to find
dy

dx
.

Example

implicit
differentiation

To find
dy

dx
directly from the implicit relationship x2 + y2 = 4 . . .

1. Assume that y is a function of x, writing it as y(x).
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2. Differentiate both sides of x2 + y2 = 4, e.g.

x2 + y2 = 4
d

dx
(x2 + y2) =

d

dx
(4)

2x +
d

dx
(y2) = 0 . . . differentiating each term

2x + 2y
dy

dx
= 0 . . . by the chain rule

2y
dy

dx
= −2x

dy

dx
= −x

y
. . . provided y 6= 0

The derivative can now be used to find the gradient of the tangent line at any
point on x2 + y2 = 4. For example, at the point (

√
2,
√

2) :

dy

dx
= −x

y
= −
√

2√
2

= −1

Example

tangent to
an ellipse

Use implicit differentiation to find the gradient of the tangent line to the
general point P (x, y) on the ellipse x2 + xy + y2 = 1. Then find the equation
of the tangent line at (1,−1)
Answer

1. Assume that y is a function of x, writing it as y(x).

2. Differentiate both sides of x2 + xy + y2 = 1, e.g.

x2 + xy + y2 = 1
d

dx
(x2 + xy + y2) =

d

dx
(1)

2x +
d

dx
(xy) +

d

dx
(y2) = 0 . . . differentiating each term

2x + (y + x
dy

dx
) +

d

dx
(y2) = 0 . . . by the product rule

2x + (y + x
dy

dx
) + 2y

dy

dx
= 0 . . . by the chain rule

(2x + y) + (x + 2y)
dy

dx
= 0 . . . collecting like terms

dy

dx
= −2x + y

x + 2y
. . . provided x + 2y 6= 0

The gradient of the tangent line at (1,−1) is :

dy

dx
= −2x + y

x + 2y
= −2− 1

1− 2
= −1
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The equation of the tangent line is :

y = −x + c, for some number c.

Substituting (1,−1) into this equation shows that c = 2, and that the equation
of the tangent line at (1,−1) is y = −x + 2.

A normal to a curve is a line which is perpendicular to the tangent at the
point of contact.

If the gradient of the tangent line is m1(6= 0), and the gradient of the normal
is m2, then

m1m2 = −1.

Example

normal to
an ellipse

Use implicit differentiation to find the gradient of the tangent line at the

general point P (x, y) on the ellipse
x2

4
+

y2

16
= 1. Then find the equation of

the normal line at (
√

2, 2
√

2).

Answer

1. Rewrite the equation of the ellipse as 4x2 + y2 = 16.

2. Assume that y is a function of x, writing it as y(x).

3. Differentiate both sides of 4x2 + y2 = 16, e.g.

4x2 + y2 = 16
d

dx
(4x2 + y2) =

d

dx
(16)

8x +
d

dx
(y2) = 0 . . . differentiating each term

8x + 2y
dy

dx
= 0 . . . by the chain rule

dy

dx
= −4x

y
. . . provided y 6= 0

The gradient of the tangent line at P (x, y) is −4x

y
.

The gradient of the normal at P (x, y) is

− 1(
−4x

y

) = −1×
(
− y

4x

)
=

y

4x

The equation of the normal at (
√

2, 2
√

2) is

y =
1

2
x + c, for some number c.
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Substituting (
√

2, 2
√

2) into this equation shows that

c =
3
√

2

2
,

and that the equation of the tangent line at (
√

2, 2
√

2) is y = 2x +
3
√

2

2
.

Exercise 2.2.5

1. Find
dy

dx
if :

(a) x2 + y2 = 16

(b) x2 + 3y2 = 9

(c) x2 − y2 = 25

(d) x2 + xy + y2 = 10

(e) x3 + 2x2y + y2 = 10

2. Find the gradient of the tangent line to:

(a) x2 + y2 = 1 at (
√

2,
√

2)

(b) x2 − xy + y2 = 1 at (1, 1)

(c) x + y = 2xy at (1, 1)

3. Find the equation of the normal to:

(a) x2 + y2 = 8 at (2, 2)

(b) x2 +
y2

2
= 3 at (1, 2)

4. Show that the normal to the circle x2 + y2 = 1 at the point (a, b) with ab 6= 0
always passes through the origin.



Appendix A

First Principles

The graph below shows how a function f(x) might change between x = a and x = b.

8  Differentiation 

 

1.3  The rate of change of a function 

The velocity of a car descibes how distance changes with time. The population growth rate 

describes how a population changes with time. How can we describe the way a general function 

f (x) changes with x ? 

 

 

 

 

 

 

 

 

 

 

The average rate of change of the function f (x)  in the interval from a  to b  is 

!f

!x
=
f (b) " f (a)

b " a
. 

# This can be interpreted as the slope of the chord between a, f (a)( )  and b, f (b)( ) . 

The average rate of change across an interval is an approximation to the rate of change of a 

function at a point (instantaneous rate of change).
6
 

As the width of the interval (a, b)decreases, the approximation  

!f

!x
=
f (b) " f (a)

b " a
 

approaches the instantaneous rate of change of f (x) at the point x = a . 

# This can be interpreted as the slope of the tangent line to the graph of f (x)  at x = a . 

Problems 1.3 

1. Sketch the graph of y = x2 for 0 ! x ! 4  and draw on it chords from P(1, 1)  to each of the 

points 
 
Q(2, 4) , R(3, 9)  and 

 
S(4, 16) . 

2. What is the average rate of change of x
2

 between 

i.  x =  1 and  x =  4  

ii.  x =  1 and  x =  3  

iii.  x =  1 and  x =  2  

3. By considering the average rate of change, estimate instantaneous rate of change of x
2

 at 
x = 1  to within 0.1.

                                                
6
 The word instantaneous is used describe to the rate of change of f (x)with respect to x even though the variable x 

may not be a time variable. 

b ! a  

f (b) ! f (a)

 

a  b

 

f (x)

 

x 

f (a)

 

f (b)

 

The gradient of the chord from (a, f(a)) to (b, f(b) is

∆y

∆x
=

change in y

change in x
=

f(b)− f(a)

b− a
.

As the width of the interval [a, b] decreases, the approximation

∆y

∆x
=

f(b)− f(a)

b− a
.

becomes closer to the gradient of the tangent line to the graph of f(x) at x = a, and
so to the derivative of f(x) at x = a.

If we put b = a + h, then the derivative of f(x) at x = a is given by the limit

dy

dx
= lim

∆x→0

∆y

∆x
= lim

h→0

f(a + h)− f(a)

(a + h)− a

32
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Definition

The derivative of y = f(x) at the point (a, f(a)) is given by the limit

dy

dx
= lim

h→0

f(a + h)− f(a)

h

Example

first
principles

at x = a

Find the derivative of y = x2 at x = a using first principles

1. From the definition . . .

dy

dx
= lim

h→0

(a + h)2 − a2

h

2. Expanding, then simplifying and taking the limit . . .

dy

dx
= lim

h→0

(a2 + 2ah + h2)− a2

h

= lim
h→0

2ah + h2

h
= lim

h→0
2a + h

= 2a

The derivative at x = a is
dy

dx
= 2a

Example

first
principles

without
using
x = a

Differentiate y = x2 + 4x + 2 using first principles

1. From the definition . . .

dy

dx
= lim

h→0

[(x + h)2 + 4(x + h) + 2]− [x2 + 4x + 2]

h

2. Expanding, then simplifying and taking the limit . . .

dy

dx
= lim

h→0

[x2 + (2h + 4)x + (h2 + 4h + 2)]− [x2 + 4x + 2]

h

= lim
h→0

2hx + (h2 + 4h)

h
= lim

h→0
2x + h + 4

= 2x + 4

The derivative is
dy

dx
= 2x + 4
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Example

cubic
function

Differentiate y = x3 using first principles

1. From the definition . . .

dy

dx
= lim

h→0

(x + h)3 − x3

h

2. Expanding, then simplifying and taking the limit . . .

dy

dx
= lim

h→0

(x3 + 3x2h + 3xh2 + h3)− x3

h

= lim
h→0

3x2h + 3xh2 + h3

h
= lim

h→0
3x2 + 3xh + h2

= 3x2

The derivative is
dy

dx
= 3x2

Example

rational
function

Differentiate f(x) =
x + 1

x + 2
using first principles

1. From the definition . . .

f ′(x) = lim
h→0

(x + h) + 1

(x + h) + 2
− x + 1

x + 2

h

2. Expanding, then simplifying and taking the limit . . .

f ′(x) = lim
h→0

(x + h + 1)(x + 2)− (x + 1)(x + h + 2)

(x + h + 2)(x + 2)h

= lim
h→0

1

(x + h + 2)(x + 2)

=
1

(x + 2)(x + 2)

=
1

(x + 2)2

The derivative is f ′(x) =
1

(x + 2)2
.
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Exercise A

1. Use first principles to find the derivative of y = x2 − x at x = a.

2. Differentiate y = x4 using first principles.

3. Differentiate f(x) =
x− 1

x− 2
using first principles.
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Answers

Exercise 1.1

1(a)

1(b) The constant velocity is 30 m/s.

1(c)

1(d) The constant acceleration is 0 m/s2.

Exercise 1.2

1(a) (i) mPQ =
1− 0.25

1− 0.5
= 1.5 (ii) mPR =

2.25− 1

1.5− 1
= 2.5

1(b) This follows from mPQ < mtangent < mPR .
1(c) Using the points L(0.9, 0.81) and M(1.1, 1.21), mtangent ≈ 2 is an estimate to
within ±0.1 as

mPL = 1.9 < mtangent < mPM = 2.1

2. (i) matches (a), (ii) matches (c), (iii) matches (d), (iv) matches (b)

36
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Exercise 1.3

1.

0 1 2 3 4

0

5

10

15

 

s
Q(1, 1)

s
P (2, 4)

s
R(3, 9)

s
S(4, 16)

y = x2

2(a) mQP = 3 2(b) mPR = 5 2(c) mPS = 6
3. As mQP ≤ mtangent ≤ mPR

4. Using the points L(1.9, 0.81) and M(2.1, 1.21), mtangent ≈ 4 is an estimate to
within ±0.1 as

mPL = 3.9 < mtangent < mPM = 4.1

5. When the graph is shifted the new tangent line remains parallel to the old, and
so has the same gradient.

Exercise 2.1

1(a) & 1(b)

0 1 2 3 4

0

5

10

15

 

3 + h 

s
R(3, 9)

s
S(3 + h, (3 + h)2)

y = x2

1(c) & 1(d) ∆y

∆x
=

(3 + h)2 − 9

(3 + h)− 3

=
6h + h2

h
= 6 + h

dy

dx
= lim

h→0

∆y

∆x
= lim

h→0
6 + h

= 6
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2(a) & 2(b)

 

1 2 3

-1

0

1

2

3

1 2 3

-1

0

1

2

3

 

3 + h 

2 + h 

s
U(2, 0)

s
V (2 + h, (2 + h)2 − 2(2 + h))

y = x2 − 2x

2(c) & 2(d) ∆y

∆x
=

[(2 + h)2 − 2(2 + h)]− 0

(2 + h)− 2

=
2h + h2

h
= 2 + h

dy

dx
= lim

h→0

∆y

∆x
= lim

h→0
2 + h

= 2

3(a) The y-intercept is (0, 0). The gradient is m = −2.
3(b) The tangent line is y = −2x.

4(a)

0 200 400 600

0

40000

80000

 

P (t) = 600t− t2

4(b) The population growth rate is P ′(100) = 600− 2× 100 = 400.
4(c) Solving P ′(t) = 0 gives t = 300 days.
4(d) This occurs when P ′(t) = 0 at t = 300. The maximum population size is
P (300) = 90, 000.
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Exercise 2.2.1

1(a)
dy

dx
= 20x19 1(b)

dy

dx
= − 2

x3
1(c)

dv

du
= 3u2 1(d)

dv

du
= − 1

2u
√
u

2. As h′(t) = 4t3, h′(2) = 32.

3. The derivative is
dy

dx
= 3x2, so the gradient of the curve is 3 at (1, 1).

Exercise 2.2.2

1(a)
dy

dx
= 9x2 − 2 1(b)

dy

dx
= 40x− 60 1(c)

dy

dx
= 4x + 4 1(d)

dy

dx
= − 1

x2

2. As
dy

dx
= 2x− 4, the gradients are m = −2 and m = 2.

3(a) The vertical velocity is
dh

dt
= 98− 9.8t m/s

3(b) At t = 0, the initial velocity is 98 m/s, and at t = 2, the velocity is 78.4 m/s
3(c) The maximum height is reached when t = 10 s. This height is h(10) = 490 m.

Exercise 2.2.3

1(a)
dy

dx
= 6x2 − 2x 1(b)

dy

dx
= 4x3 + 3x2 + 3

1(c)
dy

dx
= 5x4 + 24x3 − 3x2 − 12x 1(d)

du

dx
= −40x + 11

1(e)
du

dx
= 320x3 + 2400x2 + 3520x + 560 1(f) f ′(x) = −6x2 + 14x + 13

1(g) g′(t) = 15t2 + 5 +
1

t2
+

3

t4
1(h) h′(x) = 24x3 − 33x2 + 18x− 11

2(a) f ′(x) =
−3

(x− 1)2
2(b) g′(x) =

2x(x + 1)

(2x + 1)2

2(c)
dy

dt
= − t3 + 3

(t2 − 3)2
2(d)

dy

du
=

4u

(u2 + 1)2

2(e)
dx

du
=

2(u2 − 1)

(u2 + u + 1)2
2(f)

dt

dx
=

1 + 2x

2
√
x(1− 2x)2

2(g)
dy

dx
= − 2x

(x2 + 1)2
2(h)

dy

dx
= − 2

(x + 1)3

3. Density is given by the function D(t) =

√
t√

t + 1
, so the rate of change of density

is
dD

dt
=

1

2
√
t(
√
t + 1)2

.
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Exercise 2.2.4

1(a) f ◦ g(x) = x10 − 3 1(b) g ◦ f(x) = (x2 − 3)5

2(a) f(g(x)) = 3
√
x + 2 2(b) g(f(x)) =

√
3x + 2

3(a) h ◦ j(x) = 2x6 + 1 3(b) j ◦ h(x) = (2x2 + 1)3

4(a) l(m(x)) = 1
4
x2 4(b) m(l(x)) = 1

2
x2

5(a) f(x) = x5 and g(x) = x + 1 5(b) f(x) =
√
x and g(x) = x− 4

5(c) f(x) = x2 and g(x) = x2 − 3x + 4 5(d) f(x) = x3 and g(x) = 3x +
√
x

6. f(g(h(x))) = (2x + 1)2

Exercise 2.2.4 (cont.)

7(a) 4(x + 1)3 7(b) 4(x− 1)3

7(c) −3(2− x)2 7(d) −5(4− x)4

7(e) 6x(x2 + 1)2 7(f) 2(2x− 3)(x2 − 3x)

7(g) 3(4x− 3)(2x2 − 3x + 1)2 7(h) 15(1− x2)(3x− x3)4

8(a)
1

2
√
x + 1

8(b)
1√

2x + 3

8(c)
2x + 3

2
√
x2 + 3x− 1

8(d)
2− 3x2

2
√

2x− x3

8(e) − 1

2(x− 1)
√
x− 1

8(f) − x

2(x2 + 3)
√
x2 + 3

8(g) − 9x

(3x2 − 1)
√

3x2 − 1
8(h)

5x

(10− x2)
√

10− x2

9(a)
3x + 2

2
√
x + 1

9(b)
5x2 + 6x√

2x + 3

9(c)
3x + 8

2(3x + 4)
√

3x + 4
9(d)

x3 + 2x

(x2 + 1)
√
x2 + 1

10(a)
dy

dx
= − x4 − 1

(x4 + 1)
√
x4 + 1

10(b) x = 21/4 ≈ 1.19

10(c) max =
21/4

2 + 1
≈ 0.396.

Exercise 2.2.5

1(a)
dy

dx
= −x

y
1(b)

dy

dx
= − x

3y
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1(c)
dy

dx
=

x

y
1(d)

dy

dx
= −2x + y

x + 2y

1(e)
dy

dx
= −3x2 + 4xy

2x2 + 2y

2(a) m = −1 2(b) m = −1 2(c) m = −1

3(a) y = x 3(b) y = x + 1

4. The gradient of the tangent to the circle through the point (a, b) is

mtangent = −a

b
,

so the gradient of the normal is

mnormal =
b

a
,

and the equation of the normal is y =
b

a
x. This shows the normal passes through

(0, 0).

Exercise A

1.
dy

dx
= lim

h→0

[(a + h)2 − (a + h)]− [a2 − a]

(a + h)− a
= lim

h→0

2ah + h2 − h

h
= 2a− 1

2.
dy

dx
= lim

h→0

(x + h)4 − x4

(x + h)− x
= lim

h→0

4x3h + 6x2h2 + 4xh3 + h4

h
= 4x3

3. f ′(x) = lim
h→0

x + h− 1

x + h− 2
− x− 1

x− 2
(x + h)− x

= lim
h→0
− h

h(x + h− 2)(x− 2)
= − 1

(x− 2)2


