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This Topic . . .

The topic has 2 chapters:

Chapter 1 introduces integration which together with differentiation are parts of
the branch of mathematics called Calculus.

The chapter begins by asking the question: Given the rate of change of a
quantity, how can we find the quantity? This question is related to the problem
of finding the area of the region between a curve and the horizontal axis. Upper
and lower rectangles are used to approximate this region.

The definite integral is introduced together with its properties.

Chapter 2 introduces the Fundamental Theorem of Calculus. This central theorem
links integration to differentiation and enables integrals to be evaluated by
‘reverse’ differentiation.

Antiderivatives and indefinite integrals are introduced. Standard integrals are
used to used to integrate more complex functions. The substitution method
is used to simplify the integration of composite functions.

Selected applications include calculation of the exact area between two curves
and of net change in quantities.

The topic uses the standard derivatives and methods of differentiation introduced in
Topic 6.
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Chapter 1

Integrals

1.1 Introduction

Differentiation was concerned with the question:

Given a quantity, how can we find its rate of change?

If we know the volume of water entering a dam as a function of time, we can use
differentiation to find the rate at which the dam is filled.

This topic introduces integration, which is concerned with the question:

Given the rate of change of a quantity, how can we find the quantity?

If we know the rate at which a dam is filled, we use integration to find the volume
of water entering the dam as a function of time.

Differentiation and integration are parts of Calculus.i

Example

constant
flow

A dam is filled from a creek with a constant flow of 2000 litres/min. This is
shown on the flow-time graph below.

6

flow (litres/min)

2,000

-
0 time (min)

iCalculus is a branch of mathematics that includes the study of limits, differentiation, inte-
gration and infinite series, and has widespread applications in science and engineering. The word
calculus was introduced in the mid 17th century from Latin, and means ‘a small stone used for
counting’.
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2 CHAPTER 1. INTEGRALS

As the flow is constant, the volume of water flowing into the dam after t
minutes is:

volume = flow× time

= 2000× t
= 2000 t litres

You can see that the volume of water entering the dam is the area under the
flow-time graph from 0 to t minutes:

6

flow (litres/min)

2,000

-
0 t time (min)

Example

changing
flow

Suppose instead that the flow of water entering the dam changed at the rate
2000− 100t litres/min after t minutes. The flow-time graph would then be:

6

flow (litres/min)

HH
HHH

HHH
HHH

HHH

2,000

-
0 20 time (min)

We can estimate the volume of water entering the dam in 20 minutes by
subdividing the interval [0, 20] on the x-axis into four equal parts:

6

flow (litres/min)

HHH
HHH

HHH
HHH

HH

2,000

-
0 5 10 15 20 time (min)
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You can see that the area of the upper rectangle above interval [ 0, 5 ]

height × width = 2000× 5

= 100, 000

is an upper estimate of the volume of water flowing into the dam for 0 ≤ t ≤ 5,
and that the area of the lower rectangle

height × width = (2000− 100× 5)× 5

= 75, 000

is a lower estimate of the volume of water flowing into the dam for 0 ≤ t ≤ 5.

The sum of the areas of the four upper rectangles gives an upper estimate of
the total volume water flowing into the dam for the 20 minutes:

2000× 5 + (2000− 100× 5)× 5 + (2000− 100× 10)× 5 + (2000− 100× 15)× 5

= 25, 000 litres

and the sum of the areas of the lower rectangles give a lower estimate of the
total volume:

(2000− 100× 5)× 5 + (2000− 100× 10)× 5 + (2000− 100× 15)× 5 + 0

= 15, 000 litres

. . . the volume of water entering the dam is between 15, 000 and 25, 000 litres.

This estimate can be improved by taking finer subdivisions of interval [ 0, 20 ].

6

flow (litres/min)

HHHH
HHH

HHH
HHHH

2,000

-
0 5 10 15 20 time (min)

With eight subdivisions, the upper and lower estimates are 17, 500 and 22, 500.

As smaller subdivisions are taken, you can see that the sum of the areas of
the upper and lower rectangles become closer to each other and that both sums
become very close to the area under the flow-time curve between t = 0 and
t = 20.
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6

flow (litres/min)

HH
HHHH

HHH
HHH

HH

2,000

-
0 20 time (min)

. . . in this case the total volume of water entering the dam (ie. the shaded
area under the flow-time graph) is easy to find: 1

2
× 20× 2000 = 20, 000 litres.

Example

rate of
change

total
change

The reasoning in the previous example can be used to show that if water flows
into the dam at the rate of 2000 − 100t litres/min, then the change in the
volume of water in the dam after t minutes is equal to the area under the
flow-time graph from 0 to t, when t ≤ 20.

6

flow (litres/min)

HH
HHH

HHH
HHH

HHH

2,000

-

(t, 2000− 100t)

0 t 20 time (min)

s

This area can be found by adding the areas of the rectangle and triangle below.

H
HHH

HHHH

︸ ︷︷ ︸
t

100t

{

2, 000− 100t

{

. . . the volume of water in the dam increases by

t× (2000− 100t) +
1

2
× t× 100t = 2000t− 50t2 litres

after t minutes.ii

iiDifferentiating this result confirms that the rate of change of in volume of water in the dam is

dV

dt
= 2000− 100t.
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Exercise 1.1

1. Rainwater flowed into a 1,000 litre tank at a constant rate of 10 litres/min.

(a) Draw a graph of the constant flow f(t) into the tank for t ≥ 0 minutes.

(b) Calculate the total volume of the water flowing into the tank after t
minutes.

(c) Draw a graph of the volume V (t) of water in the tank for 0 ≤ t ≤ 60, if
the tank contained 100 litres before the rain began.

(d) Interprete the gradient of the line in (c).

2. At time t = 0, a car began travelling up a hill with a velocityiii of

v(t) = 30− 0.5t m/s,

where t is measured in seconds.

(a) Draw a graph of the velocity v(t) of the car for 0 ≤ t ≤ 60 seconds.

(b) Calculate the distance travelled by the car after 60 seconds.

(c) Calculate the distance s(t) travelled by the car after t seconds.

3. Sketch the parabola y = 1− x2 for 0 ≤ x ≤ 1.

Estimate the area between the parabola and the x-axis for 0 ≤ x ≤ 1 by:

i. subdividing the interval [ 0, 1 ] into five equal parts.

ii. constructing upper and lower rectangles on each subinterval to obtain
upper and lower estimates of the area under the parabola and above each
subinterval.

iii. summing of the areas of the upper and lower rectangles.

iiivelocity = rate of change of distance with time.
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1.2 Area under a curve

In the previous section we discovered that the answer to the question:

Given the rate of change of a quantity, how can we find the quantity?

was found by examining the area under the rate of change graph.

We can calculate the exact area under some curves, but for others we cannot and
in these cases we need to estimate the area.iv

If f(x) is a positive continuous function on [ a, b ], then we can estimate the area
between the curve and the x-axis from x = a to x = b by using upper and lower
rectangles.

Example

upper
rectangles

lower
rectangles

Consider the function f(x) = x2 and the region between the graph of f(x) and
the x-axis, bounded by the vertical lines x = 1 and x = 4.

 

625

-
0 1 2 3 4 5

We can estimate the area A of this region by subdividing the interval [ 1, 4 ]
into three equal intervals of length 1, and then using upper rectangles on each
subinterval to estimate the area under the curve.

Upper rectangles are rectangles with height equal to the maximum value of a
function on a subinterval.

 

625

-
0 1 2 3 4 5

ivThis will be discussed in more detail later.
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The sum AU of the areas of the upper rectangles

AU = 1× f(2) + 1× f(3) + 1× f(4)

= 1× 4 + 1× 9 + 1× 16

= 29

is an upper estimate of area A.

We can find a lower estimate for A by using lower rectangles.

Lower rectangles are rectangles with height equal to the minimum value of a
function on a subinterval.

 

625

-
0 1 2 3 4 5

The sum AL of the areas of the lower rectangles

AL = 1× f(1) + 1× f(2) + 1× f(3)

= 1× 1 + 1× 2 + 1× 9

= 12

is an lower estimate of area A.

This shows that area A is between 12 and 29 unit 2.

We can get a better estimate of A by taking smaller subintervals.

For example, if [ 1, 4 ] was divided into 6 equal parts of length 0.5, then the
sum of the areas of the upper rectangles would be:

AU = 0.5× f(1.5) + 0.5× f(2) + 0.5× f(2.5) + 0.5× f(3)

+ 0.5× f(3.5) + 0.5× f(4)

= 0.5× 1.52 + 0.5× 22 + 0.5× 2.52 + 0.5× 32 + 0.5× 3.52 + 0.5× 42

= 24.875 ,

and the sum of the areas of the lower rectangles would be:

AL = 0.5× f(1) + 0.5× f(1.5) + 0.5× f(2) + 0.5× f(2.5)

+ 0.5× f(3) + 0.5× f(3.5)

= 0.5× 12 + 0.5× 1.52 + 0.5× 22 + 0.5× 2.52 + 0.5× 32 + 0.5× 3.52

= 17.375 .
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. . . showing 17.375 ≤ A ≤ 24.875.

As further subdivisions are taken, the difference between AU and AL becomes
smaller and each become closer to the area A (= 21 unit 2).

It is easy to estimate the difference AU − AL when f(x) is either an increasing
function or a decreasing function.

Example (continued)

AU −AL As f(x) = x2 is an increasing function, the diagram below shows that the
difference in areas AU − AL is equal to the area of a rectangle with:

• width = width of subinterval

• height = height of largest upper rectangle
− height of smallest lower rectangle

625

-
0 1 2 3 4 5

This observation can be used to calculate how small subintervals need be in
order to estimate area A with a predetermined precision.

For example, if we wish to estimate A to within 0.1 unit2, then we need to use
subintervals of width w where

w × (16− 1) ≤ 0.1
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Exercise 1.2

1. Sketch the parabola y = 1− x2 for 0 ≤ x ≤ 1.

(a) Estimate the area between the parabola and the x-axis for 0 ≤ x ≤ 1 by:

i. subdividing the interval [ 0, 1 ] into two equal parts.

ii. constructing upper and lower rectangles for each subinterval.

iii. summing the areas of the upper and lower rectangles.

(b) How many subintervals do you need to estimate the area to within 0.1
unit2 ?

2. Sketch the parabola y = 1− x2 for −1 ≤ x ≤ 1.

Estimate the area between the parabola and the x-axis by:

i. subdividing the interval [−1, 1 ] into four equal parts.

ii. constructing upper and lower rectangles for each subinterval.

iii. summing the areas of the upper and lower rectangles.
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1.3 The definite integral

Suppose that f(x) is a positive continuous function for a ≤ x ≤ b, and that the
interval [ a, b ] is divided into n equal parts by the points x0, x1, . . . , xn, with a = x0
and b = xn.

The area A between the curve y = f(x) and the x-axis from x = a to x = b can be
estimated by constructing rectangles of heights f(x0), f(x1), . . . , f(xn−1) on each
of the intervals [ x0, x1 ], [ x1, x2 ], . . . , [xn−1, xn ] as in the diagram below.

 

y = f(x)6
y

-
xa x1 x2 x3 xn−2 xn−1 b

x0 xn

. . . . . .

The sum of the areas of these rectangles is equal to v

f(x0)∆x+ f(x1)∆x+ f(x2)∆x+ · · ·+ f(xn−1)∆x =
n−1∑
i=0

f(xi)∆x

where ∆x =
b− a
n

.

As each rectangle is between the upper and lower rectangles on the same subinterval,
you can see that

n−1∑
i=0

f(xi)∆x→ A as n→∞ .

The limit

lim
n→∞

n−1∑
i=0

f(x) ∆x

is represented by ∫ b

a

f(x) dx

which is read aloud as ‘the integral from a to b of f(x) dee x’.vi

vSee Appendix A.
viThe verb to integrate means to form into one whole, and integral is the whole obtained after

integration.
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In this form :

• the limit replaces the ‘
∑

’ with an elongated S, ‘

∫
’ , called the integral

symbol.

• the ∆x is replaced by dx

• the values at the top and bottom of the integral symbol are the boundaries
of the region between the curve y = f(x) and the x-axis. They are called the
upper and lower limits of the integral.

This integral is called a definite integral as its upper and lower limits are given. We
will consider indefinite integrals in the next chapter.

If f(x) is a positive continuous function for a ≤ x ≤ b, then the area between
the curve y = f(x) and the x-axis from x = a to x = b is represented by
the definite integral: ∫ b

a

f(x) dx

Note: It is easier to work with a sum like

f(x0)∆x + f(x1)∆x + f(x2)∆x + · · ·+ f(xn−1)∆x =
n−1∑
i=0

f(xi)∆x ,

than it is with sums of areas of upper and lower rectangles, as the heights of the rectangles

have a clear pattern.

We need to investigate the definite integral further . . . .

Suppose that f(x) is a negative continuous function for a ≤ x ≤ b, and that the
interval [ a, b ] is divided into n equal parts by the points x0, x1, . . . , xn, with a = x0
and b = xn.

The area A between the curve y = f(x) and the x-axis from x = a to x = b can be
estimated using rectangles of heights −f(x0), −f(x1), . . . , −f(xn−1) on each of the
intervals [x0, x1 ], [ x1, x2 ], . . . , [xn−1, xn ], as in the diagram below.

y = f(x)

6

?

y

-
x

a x1 x2 x3 xn−2 xn−1 b

x0 xn


−→height

−f(x0)

u
(x0, f(x0))

. . . . . .
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The sum of the areas of these rectangles is equal to

−f(x0)∆x− f(x1)∆x− f(x2)∆x− · · · − f(xn−1)∆x = −
n−1∑
i=0

f(xi)∆x

where ∆x =
b− a
n

. As n→∞, you can see that

If f(x) is a negative continuous function for a ≤ x ≤ b, the integral∫ b

a

f(x) dx = lim
n→∞

n−1∑
i=0

f(xi)∆x

is equal to the negative of the area between the curve y = f(x) and the
x-axis from x = a to x = b.

. . . and what if f(x) is a continuous function on [ a, b ] with sections above and below

the x-axis? How should we interpret the integral
∫ b
a
f(x) dx in this case?

Once more we subdivide the interval [ a, b ] into n equal parts using the points
x0, x1, . . . , xn, with a = x0 and b = xn, and then consider the limit

lim
n→∞

n−1∑
i=0

f(xi)∆x

(
=

∫ b

a

f(x) dx

)
.

 

6

?

y

-�
xa

b. . . . .

. . .

Using the diagram above as a guide, you can see that as n→∞,

• the area of each rectangle → 0, and

•
n−1∑
i=0

f(xi)∆x→ (area below curve and above x-axis minus

area above curve and below x-axis)
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In general,

If f(x) is a continuous function for a ≤ x ≤ b, then∫ b

a

f(x) dx = lim
n→∞

n−1∑
i=0

f(xi)∆x

is equal to the difference between

(a) the sum of the areas under f(x) and above the x-axis and

(b) the sum of the areas above f(x) and below the x-axis

for a ≤ x ≤ b.

Exercise 1.3

1. It is known that ∫ π/2

0

sin(x) dx = 1

Use the graph of sin x below to evaluate

(a)

∫ π

0

sin(x) dx

(b)

∫ 0

−π
sin(x) dx

(c)

∫ 3π/2

0

sin(x) dx

-�
x

6

?

y

−π 0 π 2π

2. Draw an appropriate graph and use it to evaluate∫ π

0

(1 + sin(x)) dx
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1.4 Properties of the definite integral

1.4.1 Additive Properties

The following properties are useful when evaluating integrals.

Property 1 (Additivity)

If f(x) is continuous on [ a, b ] and a < c < b, then∫ c

a

f(x) dx+

∫ b

c

f(x) dx =

∫ b

a

f(x) dx

This property is clearly true when f(x) is a positive continuous function on [ a, b ],
as the area between the curve y = f(x) and the x-axis from x = a to x = b is equal
to the sum of areas from x = a to x = c, and from x = c to x = b. It can also be
confirmed directly when f(x) takes negative values on [ a, b ].

Property 2 ∫ a

a

f(x) dx
def
= 0

The original definition of the integral
∫ b
a
f(x) dx assumed that a < b. Property 2

is an extension of this definition to the case a = b.vii It is intuitively valid as a
rectangle with zero width has zero area.

Property 3

If f(x) is continuous on [ a, b ], then∫ a

b

f(x) dx
def
= −

∫ b

a

f(x) dx

The original definition of the integral
∫ b
a
f(x) dx assumed that a < b. Property 3 is

an extension of this definition to the case a > b. It is consistent with properties 1
and 2 as ∫ b

a

f(x) dx+

∫ a

b

f(x) dx =

∫ a

a

f(x) dx = 0

Observe that properties 2 and 3 show that there is no restriction on the numbers that
can be used as upper and lower limits in integrals.

viiThe symbol
def
= means is defined as.
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1.4.2 Linear Properties

The following properties are used to rewrite integrals of complex functions in terms
of integrals of simpler functions.

Property 1

If f(x) is continuous on [ a, b ] and k is a constant, then∫ b

a

kf(x) dx = k

∫ b

a

f(x) dx

This follows directly from the definition of an integral as

n−1∑
i=0

kf(x)∆x = k

(
n−1∑
i=0

f(x)∆x

)

Property 2

If f(x) and g(x) are continuous on [ a, b ], then∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx

This follows directly from the definition of an integral as

n−1∑
i=0

(f(x) + g(x))∆x =
n−1∑
i=0

f(x)∆x+
n−1∑
i=0

g(x)∆x

Note: Properties 1 and 2 can be extended to any linear combinationviii of functions. If

• f(x), g(x), h(x), . . . are continuous on [ a, b ] and

• h, k, l, . . . are constants,

then∫ b

a
(hf(x) + kg(x) + lh(x) + . . .) dx = h

∫ b

a
f(x) dx + k

∫ b

a
g(x) dx + l

∫ b

a
h(x) dx + . . .

viiiA linear combination of functions is a sum of multiples of the functions. Many mathematical
functions are constructed from linear combinations of simpler functions. For example, polynomials
are linear combinations of powers.
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Exercise 1.4

1. It is known that ∫ 1

0

xn dx =
1

n+ 1

for integers n ≥ 0. Use this to evaluate

(a)

∫ 1

0

100x4dx

(b)

∫ 1

0

(x2 + x+ 1) dx

(c)

∫ 1

0

(x+ 2)(x− 1) dx

2. If

∫ 1

0

f(x) dx = a,

∫ 3

2

f(x) dx = b and

∫ 3

0

f(x) dx = c, find

∫ 2

1

f(x) dx.



Chapter 2

Integration

2.1 Fundamental Theorem of Calculus

The most important idea in calculus is that it is possible to calculate a definite
integral without needing to use limits or to evaluate the area under a curve. This
is called the Fundamental Theorem of Calculus and was discovered by Newton and
Leibnitz.i

Fundamental Theorem of Calculus ii

Let f(x) be a continuous function on the interval [ a, b ]. If F (x) is a solution
of F ′(x) = f(x), then ∫ b

a

f(x) dx = F (b)− F (a)

The difference F (b)− F (a) is written as [F (x)]ba.

Example

region
above
x-axis

What is the area of the region enclosed by the parabola y = 1 − x2 and the
x-axis from x = −1 to x = 1?

6

?

-�
−1 0 1 x

y

y = 1− x2

iSir Isaac Newton (1643 - 1727), Gottfried Wilhelm von Leibniz (1646 - 1716)
iiSee Appendix B for a justification of the fundamental theorem.

17



18 CHAPTER 2. INTEGRATION

Answer

As 1− x2 ≥ 0 when −1 ≤ x ≤ 1, the enclosed area is

∫ 1

−1
(1− x2) dx.

One solution of F ′(x) = 1− x2 is F (x) = x− 1
3
x3, so∫ 1

−1
(1− x2) dx =

[
x− x3

3

]1
−1

=
2

3
− (−2

3
)

=
4

3
unit2

Example

region
straddles

x-axis

What is the area of the region enclosed by the parabola y = 1 − x2 and the
x-axis from x = 0 to x = 1.5?

Answer

The region can be split into two parts:

• 0 ≤ x ≤ 1, where 1− x2 ≥ 0.

• 1 ≤ x ≤ 1.5, where 1− x2 ≤ 0.

The area of the region is∫ 1

0

(1− x2) dx−
∫ 1.5

1

(1− x2) dx .

One solution of F ′(x) = 1− x2 is F (x) = x− 1
3
x3, so∫ 1

0

(1− x2) dx−
∫ 1.5

1

(1− x2) dx =

[
x− x3

3

]1
0

−
[
x− x3

3

]1.5
1

=

(
2

3
− 0

)
−
(

1.5− (1.5)3

3
− 2

3

)
= 0.9583̇ unit2

Integration was initially described as being concerned with the question:

Given the rate of change of a quantity, how can we find the quantity?

This question is central to the Fundamental Theorem of Calculus. In order to eval-

uate the definite integral

∫ b

a

f(x) dx, we need to answer:

Given the rate of change of a quantity f(x), how do we find the quantity F (x)?

This is explored in Section 2.2.
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Exercise 2.1

1. F (x) = x− 1
3
x3 + 100 is a solution of F ′(x) = 1− x2.

Rework the first example using this solution of F ′(x) = 1− x2.

2. What is the area of the region between the parabola y = x2 and the x-axis,
bounded by the vertical lines x = 1 and x = 4?

 

625

-
0 1 2 3 4 5

y = x2

3. Let f(x) be a continuous function on the interval [ a, b ]. If

G(t) =

∫ t

a

f(x) dx

for a ≤ t ≤ b, show that G′(t) = f(t).
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2.2 Integration

2.2.1 Antiderivatives and indefinite integrals

Let f(x) be a given function. In order to use the fundamental theorem of calculus
we need to find a function F (x) for which F ′(x) = f(x). The function F (x) is called
an antiderivative of f(x).iii

We often want to find the most general solution for F ′(x) = f(x), or a family of
functions whose derivative is f(x). This can sometimes be done by a process of
systematic guessing.

Example

systematic
guessing

Consider the function f(x) = x2.

We know that the way to get a power of x through differentiation is to differ-
entiate another power of x and, as differentiation reduces the power of x by 1,
it is natural to consider F (x) = x3. This is the first guess.

If we differentiate F (x) = x3, then we get F ′(x) = 3x2. This gives an x2, but
it is multiplied by 3. If we try F (x) = 1

3
x3 instead, then will get F ′(x) = x2.

A better answer is F (x) = 1
3
x3 + C, where C is a constant, as the constant

differentiates to zero.

We write F (x) = 1
3
x3 +C as the antiderivative of f(x) = x2. We can think of

it as representing a family of solutions, one for each specific value of C.

It is useful to have a compact notation for an antiderivative.

We use the same notation with the definite integral but without the limits. Instead
of saying “ the antiderivative of f(x) is F (x) + C ”, we write∫

f(x) dx = F (x) + C .

The left side is read aloud as “ the integral of f(x) dee x ”, f(x) is referred to as the
integrand and C is called the constant of integration or an arbitrary constant.iv

The process of finding an integral is called integration.

Integration is typically carried out by systematic guessing and checking the guess us-
ing differentiation. This cannot always be done as some ordinary looking functions v

have very complex integrals which are impossible to express in terms of common
functions let alone guess!

iiiantiderivative = reverse of differentiation
ivThe phrase “arbitrary constant” is commonly used to indicate that the constant is yet to be

specified and can potentially be given any value.
vFor example ex

2

.
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In following example the constants are represented by different letters. This is
because they may not all have the same value.

Example

indefinite
integral

arbitrary
constant

(a)

∫
x2 dx =

x3

3
+ C Check:

d

dx
(
x3

3
) =

3x2

3
= x2

(b)

∫
1−x2 dx = x− x

3

3
+D Check:

d

dx
(x− x3

3
) = 1− 3x2

3
= 1−x2

(c)

∫
e2t dt =

e2t

2
+ E Check:

d

dt
(
e2t

2
) =

2e2t

2
= e2t

Notes

1. In (a), 1
3
x3 + 100 also has derivative x2. Using this instead of 1

3
x3 leads to∫

x2 dx =
1

3
x3 + 100 + C .

However indefinite integrals are traditionally written compactly with a single
constant, so the right side should be rewritten as∫

x2 dx =
1

3
x3 +D

where D = 100 + C . As C can be any constant, D also can be any constant.

2. In (c), the integral is taken with respect to the variable t. The variable used
in the integrand is the independent variable that the function is expressed in
terms of.

Example

definite
integral

arbitrary
constant

Calculate

∫ 1

0

e2t dt

Answer

The function e2t is continuous on [ 0, 1 ] and∫
e2t dt =

e2t

2
+ C

By the fundamental theorem∫ 1

0

e2t dt =

[
e2t

2
+ C

]1
0

=

[
e2

2
+ C

]
−
[
e0

2
+ C

]
=

1

2
(e2 − 1)
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Notes

1. The example above shows that it doesn’t matter which value of the arbitary
constant is used when evaluating [F (x)]ba as the constant term always cancels
out.

2. For simplicity, some texts just use C = 0 when evaluating [F (x)]ba.

Exercise 2.2.1

1. Find the general antiderivative of

(a) x3 by differentiating x4

(b) 10x4 by differentiating x5

(c) 7x2 by differentiating x3

(d) x2 + 2x+ 1 by differentiating x3, x2 and x

(e) 4x−1/2 by differentiating x1/2

(f) 100e5t by differentiating e5t

2. Calculate each of the following indefinite integrals.

(a)

∫
x3 dx (b)

∫
3x7 dx

(c)

∫
x2 + 2x+ 3 dx (d)

∫
4r−3 dr

(e)

∫
t1/2 dt (f)

∫
w−1/2 dw

3. Calculate each of the following definite integrals.

(a)

∫ 1

0

x2 dx (b)

∫ 2

1

12x5 dx

(c)

∫ 1

−1
x2 + 2 dx (d)

∫ 1

1/2

4u−2 du

(e)

∫ 16

4

2v1/2 dv (f)

∫ 2

1

8w−1/2 dw
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2.2.2 Methods

(A) Standard Integrals (Part 1)

The standard integrals covered in this topic are:

f(x)

∫
f(x) dx

k kx+ C

xn, n 6= −1
1

n+ 1
xn+1 + C

ex ex + C

1

x
ln |x|+ C

(k is a constant)

The first three integrals can be checked directly by differentiation (do check them).
The fourth is less obvious and has this form because logarithms are only defined for
positive numbers.

Checking the integral

∫
1

x
dx = ln |x|+ C :

• If x > 0, then ln |x| = lnx and

d

dx
ln |x| = d

dx
lnx =

1

x

• If x < 0, then ln |x| = ln(−x) and

d

dx
ln |x| = d

dx
ln(−x) =

−1

−x
=

1

x

So, for x 6= 0 , ∫
1

x
dx = ln |x|+ C.

← write as standard integral



final answer
presented in
the same form
as the integrand

Example

square
root

Calculate

∫
x
√
x dx .

Answer ∫
x
√
x dx =

∫
x3/2 dx

=
2

5
x5/2 + C

=
2

5
x2
√
x+ C
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Example

reciprocal
power

Calculate

∫
1

x4
dx .

← write as standard integral



final answer
presented in
the same form
as the integrand

Answer ∫
1

x4
dx =

∫
x−4 dx

=
1

−3
x−3 + C

= − 1

3x3
+ C

Example

logarithm Calculate

∫ 2

1

1

x
dx and

∫ −1
−2

1

x
dx

Answer

The function 1/x is continuous on [ 1, 2 ] and [−2,−1 ], and∫
1

x
dt = ln |x|+ C.

By the fundamental theorem∫ 2

1

1

x
dt =

[
ln |x|+ C

]2
1

= (ln 2 + C)− (ln 1 + C)

= ln 2

and ∫ −1
−2

1

x
dt =

[
ln |x|+D

]−1
−2

= (ln | − 1|+D)− (ln | − 2|+D)

= ln 1− ln 2

= − ln 2
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Exercise 2.2.2

1. Calculate each of the following integrals.

(a)

∫
10 dx (b)

∫
−10 dx

(c)

∫ √
x dx (d)

∫
1√
x
dx

(e)

∫
r2
√
r dr (f)

∫
1

s2
√
s
ds

(g)

∫
t3 dt (h)

∫
1

u3
du

2. Use the Fundamental Theorem of Calculus to calculate the following integrals.

(a)

∫ 1

0

ex dx (b)

∫ 0

−1
ex dx

(c)

∫ 2

1

1

x
dx (d)

∫ −1
−2

1

x
dx

(e)

∫ T

0

ex dx (f)

∫ S

1

1

x
dx, S > 1



26 CHAPTER 2. INTEGRATION

(B) Linear Combinations

Many mathematical functions are constructed from linear combinations of simpler
functions.vi For example, polynomials are linear combinations of powers.

We may be able to integrate these functions by systematically guessing the integral
(or antiderivative) of each term in the linear combination.

This is called integrating term-by-term.

Example

integrating
term-by-term 1. If f(x) = 100x2, then ∫

100x2 dx = 100× 1

3
x3 + C

=
100

3
x3 + C

2. If f(x) = x2 + 2x+ 3, then∫
x2 + 2x+ 3 dx =

1

3
x3 + 2× 1

2
x2 + 3× x+D

=
1

3
x3 + x2 + 3x+D

3. If f(x) = (x+ 3)(x− 7), then (expanding the brackets first)∫
(x+ 3)(x− 7) dx =

∫
x2 − 4x− 21 dx

=
1

3
x3 − 4× 1

2
x2 − 21× x+ E

=
1

3
x3 − 2x2 − 21x+ E

We can summarise this method by the following rules:

Rule 1 (multiples)

The integral of a constant multiple is the multiple of the integral.∫
cf(x) dx = c

∫
f(x) dx

Rule 2 (sums of terms)

The integral of a sum of terms is the sum of their integrals.∫
f(x) + g(x) + . . . dx =

∫
f(x) dx +

∫
g(x) dx + . . .

viA linear combination of the functions f(x), g(x), h(x) . . . is sum of multiples of the functions,
e.g. af(x) + bg(x) + ch(x) + · · · for constants a, b, c . . . For example, x2 − 4x − 21 is a linear
combination of x2, x and 1 with constants 1,−4 and − 21. Its terms are x2,−4x and − 21.
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Exercise 2.2.2

3. Calculate each of the following integrals.

(a)

∫
x2 + 4x+ 8 dx (b)

∫
25− 16x3 dx

(c)

∫ √
x− 4√

x
dx (d)

∫
x− 2

x
dx

(e)

∫
(t+ 1)(t+ 2) dt (f)

∫
(2− u)2 du

(g)

∫
(v + 1)2

v
dv (h)

∫
ew − e−w

2
dw

4. What is the area of the region enclosed by y = (x+ 1)(x− 3) and the x-axis?
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(C) Standard Integrals (Part 2)

The standard integrals introduced in (A) can be extended to include :

f(x)

∫
f(x) dx

(ax+ b)n, n 6= −1
1

a(n+ 1)
(ax+ b)n+1 + C

eax+b
1

a
eax+b + C

1

ax+ b

1

a
ln |ax+ b|+ C

for constants a 6= 0 and b.

Each integral in the table can be checked directly by differentiating, using the chain
rule. (Do this.)

Example

square
root

Calculate

∫
12
√

2x+ 3 dx .

Answer∫
12
√

2x+ 3 dx = 12

∫
(2x+ 3)1/2 dx

= 12× 1

2× 3
2

(2x+ 3)3/2 + C ← check here vii

= 4(2x+ 3)
√

2x+ 3 + C

Example

logarithm Calculate

∫
2

3x+ 5
dx .

Answer ∫
2

3x+ 5
dx = 2

∫
1

3x+ 5
dx

= 2× 1

3
ln |3x+ 5|+ C ← check here

=
2

3
ln |3x+ 5|+ C

viiSee the note on arbitary constants on page 21.
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Some functions may need to be rewritten as a function in the form f(ax+ b) before
they can be integrated.

Example

square
root

Calculate

∫
12x
√

2x+ 3 dx .

Answer

As

12x
√

2x+ 3 = (12x+ 18− 18)
√

2x+ 3

= 6(2x+ 3)
√

2x+ 3− 18
√

2x+ 3

we have . . .

∫
12x
√

2x+ 3 dx =

∫
6(2x+ 3)3/2 − 18(2x+ 3)1/2 dx

= 6× 1

2× 5
2

(2x+ 3)5/2 − 18× 1

2× 3
2

(2x+ 3)3/2 + C

=
6

5
(2x+ 3)5/2 − 6(2x+ 3)3/2 + C

=

(
6

5
(2x+ 3)− 6

)
(2x+ 3)3/2 + C

=
6

5
((2x+ 3)− 5) (2x+ 3)3/2 + C

=
12

5
(x− 1)(2x+ 3)

√
2x+ 3 + C
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Exercise 2.2.2

5. Calculate the following integrals.

(a)

∫
(3x+ 1)11 dx (b)

∫
16(1− 2x)3 dx

(c)

∫
2
√
x+ 5 dx (d)

∫
2√
p+ 5

dp

(e)

∫
12

3q + 7
dq (f)

∫
ew/2 − e−w/2

2
dw

6. Rewrite each integrand in an appropriate form and then calculate the integral.

(a)

∫
3x(3x+ 1)11 dx (b)

∫
16x(1− 2x)3 dx

(c)

∫
2x
√
x+ 5 dx (d)

∫
12q

3q + 7
dq
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(D) Composite Functions

The standard integrals on page 28 were obtained by applying the chain rule to simple
functions of the form f(ax+ b).

We can extend our integrating skills by making use of the general chain rule for
composite functions :

The derivative of a composite function is the derivative of the outside function
multiplied by the derivative of the inside function.

In symbols . . .

The Chain Rule

If f(u) and g(x) are given functions, then

F (x) = f(g(x)) =⇒ F ′(x) = f ′(g(x))g′(x)

. . . giving the indefinite integral :∫
f ′(g(x))g′(x) dx = f(g(x)) + C

Integration involves systematic guessing followed by checking using differentiation.
The most efficient way to decide if an integral has the form∫

f ′(g(x))g′(x) dx

is to (a) guess which function is the inside function g(x)

(b) confirm the presence of g′(x)

(c) verify that the integrand has the form f ′(g(x))g′(x).

Example

first g(x)

then g′(x)

Calculate

∫
x
√
x2 + 1 dx.

Answer

If g(x) = x2 + 1, then g′(x) = 2x. The integrand has x as a factor rather than
g′(x) = 2x, but this shouldn’t be a problem as x = 1

2
× 2x.∫

x
√
x2 + 1 dx =

1

2

∫ √
x2 + 1 2x dx

=
1

2
× 1

3/2
(x2 + 1)3/2 + C

=
1

3
(x2 + 1)

√
x2 + 1 + C
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Example

first g(x)

then g′(x)

Calculate

∫
x3

x4 + 10
dx.

Answer

If g(x) = x4 + 10, then g′(x) = 4x3. The integrand has x3 as a factor rather
than g′(x) = 4x3, but this isn’t a problem as it is a constant multiple of g′(x).∫

x3

x4 + 10
dx =

1

4

∫
1

x4 + 10
4x3 dx

=
1

4
× ln |x4 + 10|+ C

It was difficult to jump from∫
1

x4 + 10
4x3 to ln |x4 + 10|+ C

in this example. The substitution method below makes this easier.

The substitution or change of variable method makes the integral∫
f ′(g(x))g′(x) dx

easier and more straightforward to calculate.

The idea is to simplify the integral by using the new variable u instead of x, where
u = g(x).viii

This is done by replacing

• g(x) by u . . . as u = g(x)

• g′(x) dx by du . . . as
du

dx
= g′(x) ix

When this is done∫
f ′(g(x))g′(x) dx is transformed to

∫
f ′(u) du

with integral f(u) + C = f(g(x)) + C.

Observe the difference when the substitution method is applied to the previous two
examples (next page).

viiiAny letter can be used to represent a new variable, not just u.

ixWhile it doesn’t make sense to separate the top and bottom parts of the symbol
du

dx
, the

procedure always leads to a correct outcome. It’s best to think of this as working with the notation
in a suggestive way.
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Example

first
guess
g(x)

Calculate

∫
x
√
x2 + 1 dx.

Answer

If g(x) = x2 + 1, then g′(x) = 2x. The integrand has x as a factor rather than
g′(x) = 2x, but this shouldn’t be a problem as x = 1

2
× 2x.

Put u = x2 + 1, then du = 2x dx, and∫
x
√
x2 + 1 dx =

1

2

∫ √
x2 + 1 2x dx

=
1

2

∫ √
u du

=
1

2
× 1

3/2
u3/2 + C

=
1

3
u
√
u+ C

Rewriting the answer in terms of x gives∫
x
√
x2 + 1 dx =

1

3
(x2 + 1)

√
x2 + 1 + C

Example

first g(x)

then g′(x)

Calculate

∫
x3

x4 + 10
dx.

Answer

If g(x) = x4 + 10, then g′(x) = 4x3. The integrand has x3 as a factor rather
than g′(x) = 4x3, but this isn’t a problem as it is a constant multiple of g′(x).

Put u = x4 + 10, then du = 4x3 dx, and∫
x3

x4 + 10
dx =

1

4

∫
1

x4 + 10
4x3 dx

=
1

4

∫
1

u
du

=
1

4
ln |u|+ C

Rewriting the answer in terms of x gives∫
x3

x4 + 10
dx =

1

4
ln |x4 + 10|+ C
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Exercise 2.2.2

7. Calculate each of the following integrals.

(a)

∫
2x(x2 + 1)3 dx (b)

∫
(2x+ 4)(x2 + 4x)4 dx

(c)

∫
(x2 + 4)(x3 + 12x+ 1)5 dx (d)

∫
2x
√
x2 + 1 dx

(e)

∫
(2t+ 1)

√
t2 + t dt (f)

∫
u3 + 1√
u4 + 4u

du

(g)

∫
2v

(v2 + 1)3
dv (h)

∫
w + 2

(w2 + 4w + 3)5
dw

8. Calculate each of the following integrals.

(a)

∫
2x ex

2−2 dx (b)

∫
x2 ex

3+10 dx

(c)

∫
(x+ 1)ex

2+2x−3 dx (d)

∫
e1/x

x2
dx

(e)

∫
et(et + 10)5 dt (f)

∫
e2u
√
e2u + 1 du

(g)

∫
10ev

(ev + 1)3
dv (h)

∫
e2w + 2ew

(e2w + 4ew + 3)5
dw

9. Calculate each of the following integrals.

(a)

∫
3x2

x3 + 1
dx (b)

∫
2x+ 4

x2 + 4x
dx

(c)

∫
x2 + 4

x3 + 12x+ 1
dx (d)

∫
ex

ex + 1
dx

(e)

∫
e2t + 3et

e2t + 6et + 10
dt (f)

∫
eu − e−u

eu + e−u
du
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(E) Numerical Methods (optional)

There are many antiderivatives that can not be found explicitly, for example∫
ex

2

dx.

In these cases we use numerical methods to estimate their definite integrals. The
method of using upper and lower methods to estimate an integral is one such method,
but there are other methods that provide closer closer approximations and are easier
to program.

See

http://en.wikipedia.org/wiki/Numerical integration

http://en.wikibooks.org/wiki/Numerical Methods/Numerical Integration

and

http://people.hofstra.edu/Stefan Waner/realworld/integral/numint.html

http://people.hofstra.edu/Stefan waner/realworld/integral/integral.html

[All pages accessed 18/3/08]
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2.2.3 Selected Applications

Integration has widespread applications in science and engineering including :

• calculation of areas

• calculation of volumes

• calculation of centres of mass of solids

• calculation of the work done by a force

• problems concerned with rate of change

• problems in economics

• statistical problems

This topic only considers problems associated with areas and change in quantities
over time.

(I) Calculation of the area between two curves

We have seen in section 1.3 that if f(x) is a continuous function for a ≤ x ≤ b, then∫ b

a

f(x) dx

is equal to the the difference between

• the sum of the areas under f(x) and above the x-axis

• the sum of the areas above f(x) and below the x-axis

for a ≤ x ≤ b.

Let f(x) and g(x) be positive continuous functions for a ≤ x ≤ b. Suppose also that
f(x) ≥ g(x) on [ a, b ]. This is shown in the diagram below.

What is the area of the shaded region between f(x) and g(x) that is bounded by the
lines x = a and x = b?

 

-�
x

y = f(x)

y = g(x)

a b
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The area remains the same if each curve is translated vertically by the same distance
k, with k taken so that both curves are above the x-axis.

 

-�
x

y = f(x) + k

y = g(x) + k

a b

You can now be seen that the area of the shaded region is the difference between
the areas below:

 

-�
x

y = f(x) + k

y = g(x) + k

a b

Area1 =

∫ b

a

(f(x) + k) dx

 

-�
x

y = f(x) + k

y = g(x) + k

a b

Area2 =

∫ b

a

(g(x) + k) dx
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. . . and that the difference in areas is

A =

∫ b

a

(f(x) + k)− (g(x) + k) dx =

∫ b

a

f(x)− g(x) dx

In general,

If f(x) and g(x) are continuous functions for a ≤ x ≤ b, then∫ b

a

f(x)− g(x) dx

is equal to the the difference between

(a) the area under f(x) and above g(x) when f(x) ≥ g(x)

(b) the area under g(x) and above f(x) when g(x) ≥ f(x)

for a ≤ x ≤ b.

Example

area
between

curves

What is the area of the region enclosed by the parabola y = x2 and the line
y = x?

-�
x

6

?

y

0 1

Answer

The parabola and line intersect when

x2 = x

x2 − x = 0

x(x− 1) = 0

x = 0 & 1
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The enclosed area is ∫ 1

0

x− x2 dx =

[
x2

2
− x3

3
+ C

]1
0

=

[
1

2
− 1

3

]
− 0

=
1

6
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Exercise 2.2.3

1. Calculate the area between the curves below over the given interval

(a) f(x) = x2 − 4 and g(x) = −x2 + 9 −1 ≤ x ≤ 1

(b) f(x) = x2 and g(x) = x3 0 ≤ x ≤ 1

(c) f(x) = 2x and g(x) = −x2 + 3 −3 ≤ x ≤ 1

(e) f(x) = ex and g(x) = x 0 ≤ x ≤ 3

2. Calculate the area enclosed by the curves below

(a) f(x) = x and g(x) = x2

(b) f(x) =
√
x and g(x) = x2

(c) f(x) = x4 and g(x) = 3x2

(d) f(x) = x4 and g(x) = −2x2 + 3

3. The cable used to construct a new arts centre will have the cross-section shown
below.

-�
x

6

?

y
y = (x− 0.2)2

↙

(a) Express the cross-sectional area as an integral.

(b) Calculate the area.

(c) If 300 m of cable are requied, calculate the volume of the cable.

4. Consider the graphs of the form y = xn for positive integers n.

(a) At what points do these graphs intersect?

(b) Does the area between the graphs and the x-axis, from x = 0 to x = 1
increase or decrease as n increases?

(c) What happens if the interval in (b) was changed to [ 0, 2 ]?

(d) What happens if n is allowed to be a negative integer?
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(II) Change in Quantities

We discovered in section 1.3 that if the rate of change of a quantity is known and is
positive, then the net change in the quantity is equal to the area under the graph of
the rate of change and above the horizontal axis.

The Fundamental Theorem in section 2.1 extends this discovery:

Net Change

If the rate of change f(x) with respect to x is known for a quantity F (x),
then the net change in the quantity from x = a to x = b is

F (b)− F (a) =

∫ b

a

f(x) dx

Example

total
change

The maintenance costs M(x) for a building increase with age x years. Records
for a certain building show that the rate of increase in costs is approximately

dM

dx
= 60x2 + 400 dollars/year.

What is the total maintenance cost for

(a) the first 5 years?

(b) the first t years?

Answer

(a) The total cost for the first 5 years is∫ 5

0

60x2 + 400 dx =
[
20x3 + 400x+ C

]5
0

=
[
20× 53 + 400× 5

]
− 0

= $ 4500

(b) The total cost for the first t years is∫ t

0

60x2 + 400 dx =
[
20x3 + 400x+D

]t
0

= 20t3 + 400t dollars
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Example

definite
integral

vs

indefinite
integral

The marginal cost x of manufacturing x radios per week is

dC

dx
= 25− 0.1x dollars/radio

when 0 ≤ x ≤ 200. The fixed costs per week before production begins are
$ 1000.xi

What is the total cost of producing 100 radios per week?

Answer (definite integral)

As

Total Cost = Fixed Costs + Cost of Production

we have

Total cost (100 radios) = 1000 +

∫ 100

0

25− 0.1x dx

= 1000 +
[
25x− 0.05x2 + C

]100
0

= 1000 +
[
25× 100− 0.05× 1002

]
− 0

= $ 3000

Answer (indefinite integral)

As the marginal cost is
dC

dx
= 25− 0.1x, the cost of production is

C(x) =

∫
25− 0.1x dx

= 25x− 0.05x2 + C

for some constant C and, as C(0) = 0⇒ C = 0,

= 25x− 0.05x2

So

Total cost (100 radios) = 1000 + C(100)

= 1000 + (25× 100− 0.05× 1002)

= $ 3000

xThe marginal cost of production is the rate of change of cost of production relative to output.
xiThe fixed costs are necessary costs that are independent of the number of radios produced.

They might include lease, wages, insurance, etc.



2.2. INTEGRATION 43

When an object travels along a straight line, its displacement s(t) is its position
from the origin. A positive displacement corresponds to a position on the right of
the origin, and a negative displacement corresponds to a position on the left of the
origin. If the object moves 1m away from the origin then returns to the origin its
displacement will be zero even though the distance travelled is 2m.

Velocity v(t) is the rate of change of displacement, s′(t). An object travelling in
a positive direction has a positive velocity. When it returns towards the origin its
velocity is negative.

Example

velocity

displacement
distance

A object P moves in a straight line with velocity

v(t) =
ds

dt
= 2− 2t m/s.

for t ≥ 0 seconds. What is

(a) its change in displacement between t = 0 and t = 1?

(b) the distance it travelled between t = 0 and t = 1?

(c) its change in displacement between t = 0 and t = 2?

(d) the distance it travelled between t = 0 and t = 2?

Answer

(a) The change in displacement between t = 0 and t = 1 is

s(1)− s(0) =

∫ 1

0

2− 2t dt

=
[
2t− t2 + C

]1
0

= 1 m

(b) As v(t) ≥ 0 for 0 ≤ t ≤ 1,

distance travelled =

∫ 1

0

2− 2t dt

=
[
2t− t2 + C

]1
0

= 1 m

(c) The change in displacement between t = 0 and t = 2 is

s(2)− s(0) =

∫ 2

0

2− 2t dt

=
[
2t− t2 + C

]2
0

= 0 m
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(d) As v(t) ≥ 0 for 0 ≤ t ≤ 1, and v(t) ≤ 0 for 1 ≤ t ≤ 2

distance travelled =

∫ 1

0

2− 2t dt−
∫ 2

1

2− 2t dt

=
[
2t− t2 + C

]1
0
−
[
2t− t2 +D

]2
1

= 1− (−1)

= 2 m
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Exercise 2.2.3

5. The marginal cost of manufacturing and storing x cardboard cartons per week
is

C ′(x) = 3.2 + 0.0004x dollars per item,

and the fixed costs are $500 per week.

What is the total cost of manufacturing and storing 1000 cartons per week?

6. A new suburb is estimated to grow at the rate of

dP

dt
= 1500 + 300

√
t

people per year. If the current population is 1000, estimate

(a) the population in 25 years

(b) the population P (t) after t years

7. The area A(t) covered by an ulcer changes at a rate

dA

dt
= − 4

(t+ 1)2
cm2/day

as it heals, where t is in days. If the area is initially A(0) = 4 cm2, what is

(a) the area of the wound in 10 days

(b) the area A(t) sfter t days

8. A object P moves in a straight line with velocity

v(t) =
ds

dt
= 2− t2 m/s.

for t ≥ 0 seconds. What is the

(a) change in displacement between t = 0 and t = 1?

(b) distance it travelled between t = 0 and t = 1?

(c) change in displacement between t = 0 and t = 2?

(d) distance it travelled between t = 0 and t = 2?

9. A oil tanker hit a reef and is producing a circular oil slick that is expanding
at an approximate rate of

dr

dt
=

20√
t+ 1

where r metres is the radius of the slick after t minutes. If r(0) = 20, estimate

(a) the radius of the slick after 30 minutes

(b) the radius of the slick after t minutes
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(c) the rate at which the area of the slick is changing

10. A circular plastic tube, with internal diameter 4 cm and external diameter 4.5
cm, carries water at a constant temperature of 70◦C. The temperature inside
the tube drops off at a rate of

dT

dx
= −5

x

where x is the distance from the centre of the tube and 4 ≤ x ≤ 4.5. What is
the temperature on the outside of the tube?



Appendix A

Summation Notation

Summation notationi is used in situations where we need to write down the sum of
many numbers or terms. We could write the sum of the squares of the numbers from
1 to 100 as

12 + 22 + 32 + . . . + 1002 ,

leaving it to the reader to guess the pattern of numbers, but summation notation
can be used to express this sum concisely and without ambiguity as

100∑
i=1

i2 .

If f(i) represents an expression involving i, then

n∑
i=1

f(i)

has the following meaning :

n∑
i=1

f(i) = f(1) + f(2) + f(3) + . . . + f(n) .

This notation has a number of parts :

summation sign -

end

?

index



�

start
J
J]

general term�

n∑
i=1

f(i)

iSometimes sigma notation because the Greek letter sigma Σ is used.
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• The summation sign Σ

Σ is the Greek upper case letter corresponding to “S”. It tells us to add the
terms in a sum, where the general term is given to the right of the summation
sign.

• The index variable i

This variable is used to number or label each term in the sum. The index is
often represented by i. Other common possibilities include j and k.

• The start

The ”i =” part beneath the summation sign tells shows which index number
to begin with. It is usually either zero or one but it can be anything. You
always increase the index by one at each successive step in the sum.

• The end

The number on top of the summation sign is the final index number.

Example

sum of
indexed

terms

(a)
50∑
i=0

i2 = 02 + 12 + 22 + . . . + 502

(b)
50∑
j=1

j2 = 12 + 22 + 32 + . . . + 502

(c)
15∑
k=3

1

k
=

1

3
+

1

4
+

1

5
+ . . . +

1

15

(d)
8∑
t=0

(−1)i
2

1 + i
=

2

1 + 0
− 2

1 + 1
+

2

1 + 2
− . . . +

2

1 + 8

(e)
n∑
t=1

3
√
t = 3

√
1 + 3

√
2 + 3

√
3 + . . . + 3

√
n



Appendix B

Justification for the Fundamental
Theorem

Let f(x) be a positive continuous function on the interval [ a, b ].

The area between f(x) and the x-axis from x = a to x = b is equal to the definite
integral ∫ b

a

f(x) dx.

Define the area function F (x) for a ≤ x ≤ b to be the area between f(x) and the
x-axis on the interval [ 0, x ] as shown in the diagram below.

y = f(x)

Area F (x)

6
y

-
xa x b

The area between f(x) and the x-axis from x = a to x = b is equal to F (b)− F (a)
so ∫ b

a

f(x) dx = F (b)− F (a) .

We now show that F (x) is a solution of the equation

F ′(x) = f(x) .

49
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The area between f(x) and the x-axis on the interval from 0 to x + h is equal to
F (x+ h).

It can be seen from the diagram below that when h is very small this area is closely
approximated by adding

• the area between f(x) and the x-axis from 0 to x

• the area of the rectangle with height f(x) and base the interval [x, x+ h ].

 

y = f(x)

Area F (x)

6
y

-
xa x ↑

x + h

b

In other words
F (x+ h) ≈ F (x) + hf(x)

and
F (x+ h)− F (x)

h
≈ f(x) .

We know that as h becomes very small,

F (x+ h)− F (x)

h
→ F ′(x)

which implies
F ′(x) = f(x) .

So ∫ b

a

f(x) dx = F (b)− F (a) ,

where F (x) is a solution of the equation

F ′(x) = f(x) .

The final step in the justification is to show that this is true for any function that
satisfies F ′(x) = f(x) . . .
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If G(x) is another function with G′(x) = f(x), then

d

dx
(G(x)− F (x)) = G′(x)− F ′(x) = 0 .

This implies that G(x)− F (x) = k for some constant k.

As
G(b)−G(a) = (F (b) + k)− (F (a) + k) = F (b)− F (a)

you can see that ∫ b

a

f(x) dx = F (b)− F (a) = G(b)−G(a) ,

. . . so it doesn’t matter which solution of F ′(x) = f(x) is chosen.
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Answers

Exercise 1.1

1(a) Horizontal line with vertical intercept (0, 1000).

1(b) From graph, V (t) = 10t.

1(c) Line with gradient 10 and vertical intercept (0, 100).

1(d) Rate of change of volume per minute.

2(a) Straight line with intercepts (60, 0) and (0, 30).

2(b) 900 m.

2(c) 30t− 0.25t2

3(iii) Upper estimate = 0.76, Lower estimate = 0.56

Exercise 1.2

1(a) Upper estimate = 0.875 , Lower estimate = 0.375.

1(b) Ten equal intervals of width 0.1.

2(a) Upper estimate = 1.75 , Lower estimate = 0.75.

Exercise 1.3

1(i) 2 1(ii) −2 1(iii) 1

2. The graph of 1 + sin(x) is obtained by translating the graph of sin(x) vertically
by one unit. The area is 2 + 1× π = 2 + π

52
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Exercise 1.4

1(i) 20 1(ii)
11

6
1(iii) −7

6
2(b) c− a− b

Exercise 2.1

2. 21

Exercise 2.2.1

1(a)
1

4
x4 + C 1(b) 2x5 +D 1(c)

7

3
x3 + E

1(d)
1

3
x3 + x2 + x+ F 1(e) 8x1/2 +G 1(f) 20e5t +H

2(a)
1

4
x4 + C 2(b)

3

8
x8 +D 2(c)

1

3
x3 + x2 + 3x+ E

2(d) −2r−2 + F 2(e)
2

3
t3/2 +G 2(f) 2w1/2 +H

3(a)
1

3
3(b) 126 3(c)

14

3

3(d) 4 3(e)
224

3
3(f) 16(

√
2− 1)

Exercise 2.2.2

1(a) 10x+ C 1(b) −10x+D 1(c)
2

3
x
√
x+ E

1(d) 2
√
x+ F 1(e)

2

7
r3
√
r +G 1(f) − 2

3s
√
s

+H

1(g)
1

4
t4 + I 1(e) −1

2
u−2 + J

2(a) e− 1 2(b) 1− e−1 2(c) ln 2

2(d) − ln 2 2(e) eT − 1 2(f) lnS

3(a)
1

3
x3 + 2x2 + 8x+ C 3(b) 25x− 4x4 +D

3(c)
2

3
x
√
x− 8

√
x+ E 3(d)

1

2
x2 − 2 ln |x|+ F

3(e)
1

3
t3 +

3

2
t2 + 2t+G 3(f) 4u− 2u2 +

1

3
u3 +H

3(g)
1

2
v2 + 2v + ln v + I 3(h)

ew + e−w

2
+ J
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4.
32

3

5(a)
1

36
(3x+ 1)12 + C 5(b) −2(1− 2x)4+D

5(c)
4

3
(x+ 5)

√
x+ 5 + E 5(d) 4

√
p+ 2 + F

5(e) 4 ln |3q + 7|+G 5(f) ew/2 + e−w/2 +H

6(a)

∫
(3x+ 1)12 − (3x+ 1)11 dx =

1

39
(3x+ 1)13 − 1

36
(3x+ 1)12 + C

6(b)

∫
−8(1− 2x)4 + 8(1− 2x)3 dx =

4

5
(1− 2x)5 − (1− 2x)4 +D

6(c)

∫
2(x+ 5)3/2 − 10(x+ 5)1/2 dx⇒ 4

5
(x+ 5)2

√
x+ 5− 20

3
(x+ 5)

√
x+ 5 + E

6(d)

∫
4− 28

3q + 7
dq = 4q − 28

3
ln |3q + 7|+ F

7(a)
1

4
(x2 + 1)4 + C 7(b)

1

5
(x2 + 4x)5 +D

7(c)
1

18
(x3 + 12x+ 1)6 + E 7(d)

2

3
(x2 + 1)

√
x2 + 1 + F

7(e)
2

3
(t2 + t)

√
t2 + t+G 7(f)

1

2

√
u4 + 4u+H

7(g) − 1

2(v2 + 1)2
+ I 7(h) − 1

8(w2 + 4w + 3)4
+ J

8(a) ex
2−2 + C 8(b)

1

3
ex

3+10 +D

8(c)
1

2
ex

2+2x−3 + E 8(d) −e1/x + F

8(e)
1

6
(et + 10)6 +G 8(f)

1

3
(e2u + 1)3/2 +H

8(g) − 5

(ev + 1)2
+ I 8(h) − 1

8(e2w + 4ew + 3)4
+ J

9(a) ln |x3 + 1|+ C 9(b) ln |x2 + 4x|+D

9(c)
1

3
ln |x3 + 12x+ 1|+ E 9(d) ln |ex + 1|+ F

9(e)
1

2
ln |e2t + 6et + 10|+G 9(f) ln |eu + e−u|+H
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Exercise 2.2.3

1(a)
76

3
1(b)

1

12
1(c)

32

3
1(d) e3 − 11

2

2(a)
1

6
2(b)

1

3
2(c)

12
√

3

5
2(d)

64

15

3(a) 4

∫ 0.2

0

(x− 0.2)2 dx 3(b)
4

375
m2 3(c) 3.2 m3

4(a) They all intersect at (0, 0) and (1, 0).

4(b) The area between y = xn and x-axis from x = 0 to x = 1 is

1

n+ 1
,

which decreases as n increases.

4(c) The area would then be
2n+1

n+ 1
,

which increases as n increases. You can check this last statement by consider-
ing

2n+1

n+ 1
− 2n

n
= 2n

(
2

n+ 1
− 1

n

)
= 2n

(
n− 1

n(n+ 1)

)
≥ 0

4(d) The area is infinite when n ≤ −1. You can check this by calculating the area
from x = h to x = 1 for h > 0.

For example, for n = −1 it is∫ 1

h

x−1 dx = [ln |x|]1h = − lnh,

which becomes infinite as h→ 0.

Note. We couldn’t calculate the integral directly for the interval [ 0, 1 ] as x−1

is not defined for x = 0.

Check out what happens with x =
1

2
!

5. Total Cost = 500 +

∫ 1000

0

3.2 + 0.0004x dx = $3900

6(a) P (25) = 1000 +

∫ 25

0

1500 + 300
√
t dt = 63, 500

6(b) P (t) = 1000 +

∫ t

0

1500 + 300
√
t dt = 1000 + 1500t+ 200t

√
t



56 APPENDIX C. ANSWERS

7(a) A(10) = 4 +

∫ 10

0

− 4

(t+ 1)2
dt =

4

11
cm2

7(b) A(t) = 4 +

∫ t

0

− 4

(t+ 1)2
dt =

4

t+ 1
cm2

8(a) s(1)− s(0) =

∫ 1

0

2− t2 dt =
5

3
cm

8(b) distance travelled =

∫ 1

0

2− t2 dt =
5

3
cm

8(c) s(1)− s(0) =

∫ 2

0

2− t2 dt =
4

3
cm

8(d) distance travelled =

∫ √2
0

2− t2 dt−
∫ 2

√
2

2− t2 dt =
8
√

2− 4

3
cm

9(a) r(30) = r(0) +

∫ 30

0

20√
t+ 1

dt = 10 + 10
√

31 cm

9(b) r(t) = r(0) +

∫ t

0

20√
t+ 1

dt = 10 + 10
√
t+ 1 m

9(c) A(t) = π(10 + 10
√
t+ 1)2 = 100π(2 + 2

√
t+ 1 + t) m2

⇒ A′(t) = 100π

(
1 +

1√
t+ 1

)
m2/min

10. T (4.5) = T (4) +

∫ 4.5

4

−5

x
dx = 70 + 5 ln(4/4.5) ◦C


