UniSTEP / MLC Seminars: Maths in Lectures: Understanding the Notation

Dr David Butler
Maths Learning Centre The University of Adelaide www.adelaide.edu.au/mathslearning

```
COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969

This material has been reproduced and communicated to you by or on behal of Adelaide University pursuant to Part VB of the Copyright Act 1968 (the Act). The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.

\section*{Where you'll see maths notation}
- Maths (duh!)
- Statistics
- Physics
- Chemistry
- Economics
- Psychology
- Almost any discipline at all

\section*{Why people use maths notation}

Because it makes life easier!
- Easier to write maths down
- Easier to be accurate
- Easier to communicate with other languages
- Easier to think

\section*{How to understand maths notation}

Ask yourself:
- How do you say it?
- What does it mean?
- What are the rules for working with it?
- How is it connected to other ideas?

\section*{Example: \(\sqrt{ }\)}
- How do you say it?
\[
\begin{gathered}
\sqrt{25} \text { - "The square root of } 25 \text { " } \\
\text { "Root } 25 \text { " }
\end{gathered}
\]
- What does it mean?
\(\sqrt{x}\) is the number you square to get \(x\).
For example, \(\sqrt{25}=5\) because \(25=5^{2}\).

\section*{Example: \(\sqrt{ }\)}
- What are the rules for working with it?
- Can distribute it over multiplication and division:
\[
\sqrt{4 \times 100}=\sqrt{4} \times \sqrt{100} \quad \sqrt{\frac{3}{19}}=\frac{\sqrt{3}}{\sqrt{19}}
\]
- Can't distribute it over addition and subtraction:
\[
\sqrt{25+16} \text { ISNOT } \sqrt{25}+\sqrt{16}
\]
- Square a number if you bring it inside:
\[
3 \sqrt{2}=\sqrt{9 \times 2}
\]

\section*{Example:}
- How is it connected to other ideas?
- The opposite of squaring
- \(\sqrt{x}\) can also be written as \((x)^{\frac{1}{2}}\)
- Use it to find distances
- Use it to find the standard deviation
- Used it to solve quadratic equations
- Similar rules to \(\sqrt[3]{ }, \sqrt[4]{ }, \sqrt[5]{ }, \ldots\)

\section*{Where to find these answers}
- Listen to your teachers as they write
- Look for definitions nearby in the notes/book
- Notice the rules in written examples
- Ask someone
like the Maths Learning Centre
Level 3 East, Hub Central
10am to 4pm weekdays

\section*{Types of notation}
- Notation for naming things
- Notation for making statements about things
- Notation for creating things from old things
- Notation for abbreviating words and phrases

\section*{Notation for naming}

Often need to name something you're talking about. For example "Let x be the number we want to find..."
- Greek letters
- Well-known objects
- Vectors
- Subscripts
- Distributions

\section*{Naming: Greek Letters}

A \(\alpha\) - alpha
B \(\beta\) - beta
\(\Gamma \gamma\)-gamma
\(\Delta \delta\) - delta
E \(\varepsilon\)-epsilon
Z \(\zeta\) - zeta
H \(\eta\) - eta
\(\Theta \theta\) - theta

I l - iota
K к - kappa
\(\Lambda \lambda\) - lambda
M \(\mu\) - mu
\(\mathrm{N} v-n u\)
\(\Xi \xi-\mathrm{xi}\)
O o-omicron
\(\Pi \pi-\mathrm{pi}\)

P \(\rho\)-rho
\(\Sigma \sigma-\) sigma
T \(\tau\)-tau
Yv-upsilon
\(\Phi \phi\) - phi
\(\Psi \psi-\mathrm{psi}\)
X \(\chi\) - chi
\(\Omega \omega\) - omega

\section*{Naming: Greek Letters}
\[
\begin{array}{ccc}
\alpha \text { - alpha } & \text { l- iota } & \rho \text { - rho } \\
\beta \text { - beta } & \kappa \text { - kappa } & \Sigma \sigma \text { - sigma } \\
\Gamma \gamma \text { - gamma } & \Lambda \lambda \text { - lambda } & \tau \text {-tau } \\
\Delta \delta \text { - delta } & \mu-\mathrm{mu} & \Upsilon v \text {-upsilon } \\
\varepsilon \text { - epsilon } & \nu-\mathrm{nu} & \Phi \phi-\text { phi } \\
\zeta \text { - zeta } & \Xi \xi-\text { xi } & \Psi \psi-\text { psi } \\
\eta \text { - eta } & & \chi \text { - chi } \\
\Theta \theta \text { - theta } & \Pi \pi-\text { pi } & \Omega \omega \text { - omega }
\end{array}
\]

\section*{Naming: Well-known objects}
\(e-\mathrm{e}\) is approximately \(2.71828 .\).
\(\pi\) - pi is approximately \(3.14159 \ldots\)
\(\infty\) - infinity
\(\varnothing\) - the empty set
\(\mathbb{N}, \mathbf{N}\) - the set of natural numbers
\(\mathbb{Z}, \mathbf{Z}\) - the set of integers
\(\mathbb{Q}, \mathbf{Q}\) - the set of rational numbers
\(\mathbb{R}, \mathbf{R}\) - the set of real numbers
\(\mathbb{C}, \mathbf{C}\) - the set of complex numbers

\section*{Naming: Vectors}

In print, vectors are usually written in bold:
\[
\mathbf{u} \quad 3 \mathbf{v} \quad \mathbf{e}
\]

In handwriting, they have an extra mark:
\[
\begin{array}{llllll}
\bar{v} & \vec{v} & \tilde{v} & \underline{v} & \underset{\sim}{v}
\end{array}
\]

Please mark your vectors: GOOD \(a \underline{v}+b \underline{u}\)

BAD \(a v+b u\)

\section*{Naming: Subscripts}

Subscripts help to give names to related things (don't say it's a subscript when you read it aloud):
\[
\begin{array}{cr}
c_{1}, c_{2}, c_{3}, c_{4}, c_{5} & \mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right) \\
a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4} & \mathbf{e}_{r}, \mathbf{e}_{n}
\end{array}
\]

People use an " \(i\) " to refer to all of them at once:
\[
c_{i} \text { for } i=1,2,3,4,5
\]

\section*{Naming: Distributions}

The letters tell you which family of distribution and the numbers tell which one in that family.
\(N(28,3)\) - Normal distribution with mean 28 and standard deviation 3
\(t_{14}-\mathrm{t}\) distribution with 14 degrees of freedom
\(\chi_{5}^{2}\) - chi-squared distribution with 5 degrees of freedom
\(F(2,30)-\mathrm{F}\) distribution with 2 numerator and 30 denominator degrees of freedom
\(B(10,0.7)\) - Binomial distribution with \(\mathrm{n}=10\) and \(\mathrm{p}=0.7\)

\section*{Notation for making statements}

These notations go between bits of maths to make a statement.

Read them aloud differently depending on context:

Let \(x=6\). Then \(x=1+5=1+2+3\).
"Let \(x\) be equal to 6 . Then \(x\) is equal to 1 plus 5 , which is equal to 1 plus 2 plus 3 ."

\section*{Statements: about numbers}
\[
\begin{aligned}
& \leq- \text { "is less than or equal to" } \\
& <- \text { "is less than" } \\
& \geq- \text { "is greater than or equal to" } \\
& >- \text { "is greater than" } \\
& =- \text { "is equal to" } \\
& \neq- \text { "is not equal to" } \\
\approx, \doteq & \simeq-\text { "is approximately equal to" } \\
\propto & - \text { "is proportional to" } \\
& \equiv-\text { "is equivalent to" }
\end{aligned}
\]

\section*{Statements: about sets}
for two \([\subset-\) "is contained in", "is a subset of"
sets \([\subseteq-\) "is contained in or equal to"
For example:
\(\mathbf{N} \subset \mathbf{R}\) - "The set of natural numbers is contained in the set of real numbers"


For example:
\(e \notin \mathbf{Q}\) - "e is not in the set of rational numbers"

\section*{Statements: about other things}
for lines \(\left\{\begin{array}{l}\perp-\text { "is perpendicular to" } \\ \|- \text { "is parallel to" }\end{array}\right.\)
for a [ ~ _ "has the ___ distribution"
random
variable
For example:
\(X \sim \chi_{5}^{2}-\) " \(X\) has the chi-squared distribution with 5 degrees of freedom"
for abstract \(\{\cong-\) "is isomorphic to" algebraic objects

\section*{Notation for creating}

Some notations are for making new objects/numbers from old ones.
- Binary operations
- Symbols that work on one number
- Functions
- Complicated things

\section*{Creating: Operations on numbers}
\(5+4\) - " 5 plus 4"
5-4 - "5 minus 4"
\(5 \times 4\) - " 5 times 4", " 5 multiplied by 4"
5.4 - " 5 times 4", " 5 multiplied by 4"
xy - "x times \(y\) ", "xy"
\(5 \div 4\) - " 5 divided by 4"
\(5 / 4\) - "5 divided by 4", "5 over 4"
\(5^{4}\) - " 5 to the power of 4"
\(5^{2}\) - " 5 squared", " 5 to the power of 2"
\(5^{3}\) - " 5 cubed", " 5 to the power of 3 "

\section*{Interlude: The Order of Operations}

Operations are done in a certain order:
( ), [ ], \{ \} 1. Anything in brackets
\(x^{2} \quad\) 2. Powers
\(\div, x \quad\) 3. Division and Multiplication
,-+ 4. Subtraction and Addition
\[
4(5+6)-\frac{4+14}{2 \times 3}+3 \div 6 \times 7-(3+4[8-2])
\]

\section*{Interlude: The Order of Operations}
\[
\begin{aligned}
& 4(5+6)-\frac{4+14}{2 \times 3}+3 \div 6 \times 7-(3+4[8-2]) \\
& =4(5+6)-\frac{4+14}{2 \times 3}+3 \div 6 \times 7-(3+4 \times 6) \\
& =4(5+6)-\frac{4+14}{2 \times 3}+3 \div 6 \times 7-(3+24) \\
& =4 \times 11-\frac{18}{6}+3 \div 6 \times 7-(27) \\
& =4 \times 11-3+\frac{1}{2} \times 7-27 \\
& =44-3+3 \frac{1}{2}-27 \\
& =27 \frac{1}{2}
\end{aligned}
\]

\section*{Creating: Operations on sets}
\(A \cap B\) - "A intersection B", "the intersection of \(A\) and \(B\) "
- the set of all the things in both \(A\) and \(B\)

\(A \bigcup B\) - "A union B",
"the union of \(A\) and \(B\) "
- the set of all the things in either \(A\) or \(B\)

\(A \backslash B\) - "A without B", "the exclusion of \(B\) from \(A\) "
- the set of all the things in \(A\) but not \(B\)


\section*{Creating: Symbols for one number}
\(\sqrt{x}\) - "the square root of 25 "
- the number you square to get 25
\(\sqrt[3]{x}\) - "the cube root of 25 "
- the number you cube to get 25
\(\sqrt[4]{x}\) - "the fourth root of 25 "
\(|x|\) - "the absolute value of x ", " \(\bmod \mathrm{x}\) "
- if \(x\) is negative, make it positive

5 ! - "5 factorial"
- the product of the numbers up to 5: \(1 \times 2 \times 3 \times 4 \times 5\)

\section*{Creating: Functions}

All of these usually refer to the answer produced by the function, which is a new number.
\(f(x)\)-" f of x "
- NOT f multiplied by x !
\(\sin x\) - "sine \(x\) ", "sine of \(x\) " \(]\)
\(\cos x-" \cos x "\) ", "cos of \(x " \quad\) trigonometric \(\tan x-" \tan x^{\prime \prime}, " \tan\) of \(\left.x^{\prime \prime}\right]\)

\section*{Creating: Functions}

All of these usually refer to the answer produced by the function, which is a new number.
\(\ln x\) - "EII-En \(\mathrm{x}^{\prime \prime}\), "EII-En of x "
- the natural logarithm of \(x\) : if you do \(\mathrm{e}^{\text {this number }}\) you get x as your answer
- some people write this as \(\log x\)
\(\log _{10} x\) - "log base 10 of \(x\) ", " \(\log 10\) of \(x\) "
- the base 10 logarithm of \(x\) : if you do \(10^{\text {this number }}\) you get \(x\) as your answer
- some people write this as \(\log x\)

\section*{Creating: Sets}
\(\{x \in \mathbb{R} \mid x>1\}\) - "the set of x which are in the real numbers such that \(x\) is greater than 1 "
\(\left\{a^{2}+1 \mid a \in \mathbb{R}\right\}-\) "the set of numbers a squared plus 1 such that a is in the real numbers."
\(\{1,3, \pi, \sqrt{2}\}\) - "the set containing, 1,3, pi and the square root of \(2^{\prime \prime}\)

\section*{Creating: Sets - Intervals}
\((1,5)\) - "the set of numbers between 1 (not including 1) and 5 (not including 5)"
\((1,5\) ] - "the set of numbers between 1 (not including 1) and 5 (including 5)"
[1,5] - "the set of numbers between 1 (including 1) and 5 (including 5)"
\((1, \infty)\) - "the set of numbers from 1 (not including 1) upwards"
(- \(\infty, 5\) ] - "the set of numbers from 5 (including 5) downwards"

\section*{Creating: Complicated things}
\(x^{2}+3 x \mathrm{~d} x\) - "the integral from 0 to 5 of x squared plus 3 xdx "
\(\sum_{i=1}^{7}\left(i^{2}+2\right) \quad\) - "the sum of \(i\) squared plus 2 , as
i ranges from 1 to 7 "
\(\left.\frac{d y}{d x}\right|_{x=3}-\) "dy on dx evaluated when x is
\(\lim \frac{1}{-}\) "the limit, as \(x\) approaches \(\lim _{x \rightarrow \infty} x \quad\) infinity, of 1 over \(x^{\prime \prime}\)

\section*{Notation for abbreviating}

Shortcuts for writing things because mathematicians are lazy or want to talk to people in other countries.

\section*{Abbreviating}
\(x \rightarrow 3\) - "x approaches 3"
\(f: \mathbf{R} \rightarrow \mathbf{R}\) - "the function f sends the real numbers to the real numbers"
\(\Rightarrow\) - "implies that"
\(\Leftrightarrow\), iff - "if and only if"
wrt - "with respect to"
st - "such that"
\(\forall\) - "for all", "for every"
\(\exists\) _ "there exists"
ヨ! - "there exists a unique"

\section*{THE END}

Visit us at the Maths Learning Centre: Level 3 East, Hub Central
10am - 4pm, Mon - Fri
www.adelaide.edu.au/mathslearning
www.facebook.com/mathslearningUofA```

