Solving linear second-order differential
equations with constant coefficients

Original equation

ay”" +by"+ cy =r(x)

numbser number number function of x

Particular solution to
original equation _
1. Try sumething like rix)h but with unknown coefficients: General SOlutlon tO
w i i s - ) = homogeneous equation
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ar I vix)  leTTT adt I+ =1

eg M rlx}  —ons(2x] thentry 7 1 Solve chamcteristic equation:
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+ Sub inta original equatian; / | WA= a4, =B thenuse 25 windia) r.-
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+ Fined values of unknown coefficients: =i +i

Equate coefficients of powersof s CJR Sush in valises of x

A-R - c-A. .

y=C +D

General solution to original equation

1. Add the general salution far the homageneous equation
s the particular sohiticn for the eriginal equation:

Particular solution to original equation
satisfying conditions

1. If there are initial conditions, such as ylol=o and y'o) =5
sub them i o to find Camd D, s

z. Tut the values of C and D in to get the final solution.
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Particular solution to
original equation

1. Try something like r(x) but with unknown coefficients:

eg: If r(x) =5 thentry y = .
1
eg: If rix) = x* — 3 then try y = - =

eg: If 1(x) = 2e % thentry y = -

I
eg: If r(x) = —cos (2x) thentry y = _
2. Fromy, find y' and y": ¢
y =
y'=
y” — [ farmula with

unkrawn coefs

3. Sub into original equation:

+cy = r{x)

Equate coefficients of powersof x OR  Sub in values of x

A.B.C.

formula with + h

"\ unknown coefs

4. Find values of unknown coefficients:

5. Put the values in: /
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General solution to
homogeneous equation

1. Write down characteristic equation:

arl>+bl+c=0

2. Solve characteristic equation:

A= M,

3. Use these values to make two solutions:

If A= a, B thenuse |“F| g |ef=x

ax

If A= a, a thenuse [e & | xe

If A= @054, @=L then use g sin(ﬁx) et CDS(‘GX)

4. Use these two solutions to make general solution: l l




\ /

General solution to original equation

1. Add the general solution for the homogeneous equation
to the particular solution for the original equation:

+C +D

Particular solution to original equation
satisfying conditions

1. If there are initial conditions, such as y(o) 0 and y'(0) =5
sub them in now to find Cand D. ==

2. Put the values of C and D in to get the final solution.
y= (D - e -
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Example

d dy
Solve —= + 6— + 13y = e**
dz? dx

subject to the conditions y(0) = 1 and 3/(0) = 0.

Particular solution to original equation

Try y = Ae*”
y = 2Ae*"
yr! — 4A€2:r.

Now 3" + 6y + 13y = e**

So 4A4e* 46 x 24e** + 13 x Ae* = **
20Ae”" = e

204 =1

A=

So a particular solution is:

2y — L 2¢
Y = g€

General solution to homogeneous equation

Characteristic equation: \* + 6\ + 13 = 0.
—64++/36—-4x1x13

2 x1
—6++/—16
2

—6 + 44

2
= -3+ 2
—3x

)\:

So two solutions are e cos(2x) and e >* sin(2z).
Thus general solution to homogeneous equation 1s:

y = Ce %" cos(2x) + De * sin(27)
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General solution to original equation:

y = 2> + Ce ¥ cos(2x) + De * sin(2x)

Particular solution to original equation
satisfying conditions
Yy = %62"‘* + Ce 3% cos(2x) + De 3" sin(2x)
y = £€* —3Ce " cos(2r) — 2Ce " sin(27)
— 3De ¥ sin(2x) + 2De " cos(2x)
Substituting y(0) = 1 into the first equation gives:

1 = 55¢’ + Ce’ cos(0) + De’ sin(0)

_ 1

——@‘FC
1

__ 28

— 29

Substituting ¥'(0) = 0 into the second equation gives:

0= &e’ —3Ce’ cos(0) — 2Ce" sin(0)
— 3De"sin(0) + 2De" cos(0)
0= —3C+2D

0=5%—-3x5+2D

29
0= —5+2D
0=-5+2D
2D =52
D=4

So the particular solution is:

y = g5e”" + %6_3”" cos(2x) + g—ée_% sin(2x)
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Example

2

d-y dy
Solve 8@ — 85 + 2y = 3x

subject to the conditions y(0) = —2 and 3'(0) = 2.

Particular solution to original equation
Try y=Ax+ B
y=A
yﬂ' — 0

Now 8y" — 8y + 2y = 3z
So 8x0—8A+2(Ax+ B) =3z

—8A +2Ax + 2B = 3z
2Ax + (QB — 8A) = 3

So 24 = 2B —8A =0
A=-3 2B —8x () =0
2B +12=0

2B = 12

B=-6

So a particular solution is:

y:—%x—ﬁ

General solution to homogeneous equation
Characteristic equation: 8\*> — 8\ + 2 = 0.

AN — 4N +1=0

2A—=1)=0
20— 1=
2\ =
)\:1

. 1 1
So two solutions are e2” and ze2”.
Thus general solution to homogeneous equation is:

y = Ce?” + Drye?®
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General solution to original equation:

: 1. 1
Y= _%33 — 6+ Ce2* + Dzxez”

Particular solution to original equation
satisfying conditions

y = —%-1: — 64 Ce?™ + Dzes®
y' = =3+ 1Ce + Des* + 1Dges”
Substituting y(0) = —2 into the first equation gives:

—2=0-6+Ce"+Dx0
—2=—-6+C
C=4
Substituting ¢'(0) = 2 into the second equation gives:
2=-3+1Ce"+ D"+ 1D x 0
2=-3+3C+D
2=-34+3x4+D
2=-34+2+D
0=-3+D
D=1

So the particular solution is:

: : 1 3 1,
y=—32—6+4e2" + ges



