Maths Learning Service: Revisio	on Mathematics IA
Index Laws	Mathematics IMA
	Intro. to Fin. Maths I

Index laws are the rules for simplifying expressions involving powers of the same base number.

 $a^{m} \times a^{n} = a^{m+n}$ First Index Law $(a^{m})^{n} = a^{mn}$ Second Index Law $\frac{a^{m}}{a^{n}} = a^{m-n}$ Third Index Law $a^{-m} = \frac{1}{a^{m}}$ $a^{0} = 1$ $a^{\frac{1}{n}} = \sqrt[n]{a}$

Examples: Simplify the following expressions, leaving only positive indices in the answer.

(a) $\frac{3^{6}2^{4}}{3^{4}}$ (b) $3^{2} \times 3^{-5}$ (c) $\frac{9(x^{2})^{3}}{3xy^{2}}$ (d) $a^{-1}\sqrt{a}$ $= \frac{3^{6}}{3^{4}} \times 2^{4}$ $= 3^{-3}$ $= \frac{9}{3} \times \frac{x^{6}}{x} \times \frac{1}{y^{2}}$ $= a^{-1}a^{\frac{1}{2}}$ $= 3^{2}2^{4}$ $= \frac{1}{3^{3}}$ $= 3 \times x^{5} \times \frac{1}{y^{2}}$ $= a^{-\frac{1}{2}}$ $= \frac{1}{27}$ $= \frac{3x^{5}}{y^{2}}$ $= \frac{1}{a^{\frac{1}{2}}} \text{ or } \frac{1}{\sqrt{a}}$

Notes: (1) More involved fractional powers can be dealt with by noting that $\boxed{a^{\frac{m}{n}} = (a^{\frac{1}{n}})^m}$ by the Second Index Law. For example,

$$(27)^{\frac{2}{3}} = (27^{\frac{1}{3}})^2 = (\sqrt[3]{27})^2 = (3)^2 = 9.$$

(2) Watch out for powers of negative numbers. For example,

$$(-2)^3 = -8$$
 and $(-2)^4 = 16$, so $(-x)^5 = -x^5$ and $(-x)^6 = x^6$

Index Laws

2007 Maths IA, IMA & Intro. Fin. Maths I Revision/2

(3) In general
$$(ab)^n = a^n b^n$$
. For example,

$$(3x^2y)^3 = 3^3(x^2)^3y^3 = 27x^6y^3.$$

Exercises

- 1. Simplify the following expressions, leaving only positive indices in the answer.
 - (a) $4^2 \times 4^{-3}$ (b) $\frac{3^2 (2^2)^{-2}}{2^3}$ (c) $x^5 x^8$ (d) $(y^4)^6$ (e) $(-3)^3$ (f) $(4ab^2c)^3$ (g) $x^2 z^{-3} \times (xz^2)^2$ (h) $2^n \times (2^{-n})^3 \times 2^{2n}$ (i) $3^m \times 27^m \times 9^{-m}$ (j) $(a^{\frac{1}{2}} \times a)^5$ (k) $\frac{(-2ab)^2}{2b}$ (l) $\frac{(-a^4b)^3(ab)^5}{-a^8b^8}$ (m) $\frac{x^{-1}y^4}{x^{-5}y^{-3}}$ (n) $\left(\frac{10a^3b^{-2}}{5a^{-1}b^2}\right)^{-1}$ (o) $x\sqrt[3]{x}$
 - (p) $(a^2 \times \sqrt{a})^2$ (q) $\frac{2x^{\frac{1}{2}}x}{x^2}$ (r) $(3a)^{-1} \times 3a^{-1}$
 - (s) $32^{\frac{3}{5}}$ (t) $\left(\frac{4}{25}\right)^{\frac{3}{2}}$ (u) $\left(4^{\frac{1}{3}}\right)\left(2^{\frac{1}{3}}\right)$

Terms involving the " $\sqrt{}$ " symbol are known as a **radicals** or surds. **Notes:** (1) $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$. For example $\sqrt{144+25} = \sqrt{169} = 13$ but $\sqrt{144} + \sqrt{25} = 12 + 5 = 17$. (2) Similarly, $\sqrt{a-b} \neq \sqrt{a} - \sqrt{b}$. (3) $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$. For example $\sqrt{4 \times 9} = \sqrt{36} = 6$ and $\sqrt{4} \times \sqrt{9} = 2 \times 3 = 6$.

(4)
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
. For example $\sqrt{\frac{16}{4}} = \sqrt{4} = 2$ and $\frac{\sqrt{16}}{\sqrt{4}} = \frac{4}{2} = 2$.

These techniques can be used to simplify radicals. For example

$$\sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2} .$$
$$\sqrt{75} = \sqrt{25 \times 3} = 5\sqrt{3} .$$

When asked to simplify radical expressions involving fractions, you are required to produce a single fraction (as in ordinary algebra) with no radicals in the denominator. For example

$$\frac{\sqrt{3}}{\sqrt{2}} + \frac{2}{\sqrt{6}} = \frac{\sqrt{3}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{2}} + \frac{2}{\sqrt{6}}$$
$$= \frac{3}{\sqrt{6}} + \frac{2}{\sqrt{6}}$$
$$= \frac{5}{\sqrt{6}}$$
$$= \frac{5}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}$$
$$= \frac{5\sqrt{6}}{6}$$

Exercises (continued)

2. Simplify the following expressions

(a)
$$\sqrt{50}$$
 (b) $\sqrt{72}$ (c) $\sqrt{12} + \sqrt{27}$
(d) $\frac{1}{\sqrt{5}} - \frac{1}{\sqrt{10}}$ (e) $\frac{\sqrt{2}}{\sqrt{3}} + \frac{\sqrt{3}}{\sqrt{2}}$ (f) $\frac{1}{\sqrt{3}} - \frac{2\sqrt{3}}{\sqrt{15}}$

Answers to Exercises

1. (a) $\frac{1}{4}$ (b) $\frac{9}{2^7} = \frac{9}{127}$ (c) x^{13} (d) y^{24} (e) -27 (f) $64a^3b^6c^3$ (g) x^4z (h) 1 (i) 3^{2m} (j) $a^{15/2}$ (k) $2a^2b$ (l) a^9 (m) x^4y^7 (n) $\frac{1}{2}a^{-4}b^4$ (o) $x^{4/3}$ (p) a^5 (q) $2x^{-1/2}$ (r) a^{-2} (s) 8 (t) $\frac{8}{125}$ (u) 2 2. (a) $5\sqrt{2}$ (b) $6\sqrt{2}$ (c) $5\sqrt{3}$ (d) $\frac{2\sqrt{5}-\sqrt{10}}{\sqrt{10}}$

2. (a)
$$5\sqrt{2}$$
 (b) $6\sqrt{2}$ (c) $5\sqrt{3}$ (d) $\frac{2\sqrt{5}-\sqrt{5}}{10}$
(e) $\frac{5\sqrt{6}}{6}$ (f) $\frac{5\sqrt{3}-6\sqrt{5}}{15}$