Maths Learning Service: RevisionMathematics IAMore Trigonometry

Extending the Trigonometric Ratios to angles $> \frac{\pi}{2}$ (90°) or < 0

In the first quadrant of the unit circle above, the co-ordinates of the point P on the circle are, by definition,

$$x = \cos \theta$$
 and $y = \sin \theta$

where θ is the angle measured anti-clockwise around from the positive x-axis.

Since $\tan \theta = \frac{\sin \theta}{\cos \theta}$, we can also say that

$$\frac{y}{x} = \tan \theta.$$

This relationship holds for any angle and point on the circle.

Example: What are $\sin \frac{\pi}{2}$ and $\cos \frac{\pi}{2}$?

From the unit circle,

$$\sin\frac{\pi}{2} = y - \text{co-ordinate of } P = 1.$$

More Trigonometry

$$\cos\frac{\pi}{2} = x - \text{co-ordinate of } P = 0.$$

Check these results on a calculator.

Example: What are $\sin \frac{3\pi}{4}$, $\cos \frac{3\pi}{4}$ and $\tan \frac{3\pi}{4}$?

By symmetry, the y-co-ordinate of P is the same as for the first quadrant angle $\frac{\pi}{4}$. Hence

$$\sin\frac{3\pi}{4} = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}.$$

The x-co-ordinate of P is the negative of that for the first quadrant angle $\frac{\pi}{4}$. Hence

$$\cos\frac{3\pi}{4} = -\cos\frac{\pi}{4} = -\frac{1}{\sqrt{2}}$$

Finally,

$$\tan\frac{3\pi}{4} = \frac{1/\sqrt{2}}{-1/\sqrt{2}} = -1.$$

Exercises

- 1. Find the values of
 - (a) $\sin 0$, $\sin \frac{\pi}{2}$, $\sin \left(-\frac{\pi}{2}\right)$, $\sin \pi$, $\sin \frac{3\pi}{2}$, $\sin 2\pi$.
 - (b) $\cos 0$, $\cos \frac{\pi}{2}$, $\cos \left(-\frac{\pi}{2}\right)$, $\cos \pi$, $\cos \frac{3\pi}{2}$, $\cos 2\pi$.
 - (c) $\tan 0$, $\tan \pi$, $\tan \frac{3\pi}{4}$, $\tan \frac{7\pi}{4}$, $\tan \left(-\frac{\pi}{4}\right)$.
 - (d) $\sin \frac{7\pi}{6}$, $\cos \frac{7\pi}{6}$, $\tan \frac{7\pi}{6}$.

- (e) $\sin \frac{11\pi}{6}$, $\cos \frac{11\pi}{6}$, $\tan \frac{11\pi}{6}$.
- 2. Use the unit circle to show that
 - (a) $\sin(\pi \theta) = \sin \theta$ (b) $\cos(\pi \theta) = -\cos \theta$ (c) $\tan(\pi + \theta) = \tan \theta$ (d) $\cos(2\pi - \theta) = \cos \theta$

Circular Functions

Many situations are affected by circular motion (eg. day length in temperate areas such as Adelaide) and can be modelled using functions of the form

$$y = \sin x$$
, $y = \cos x$ or $y = \tan x$.

Plotting points from the unit circle produces these distinctive graphs (where x is measured in radians):

Note: The shape of the cosine graph is the same as for sine, but shifted backwards $\frac{\pi}{2}$ units along the *x*-axis.

More Trigonometry

These basic sine waves can be modified using the parameters A, B, C and D as follows:

$$y = A\sin(B(x+C)) + D$$

- A: changes the amplitude of the sine wave from 1 to A.
- $B: \text{ changes the period of the sine wave from } 2\pi \text{ to } \frac{2\pi}{B}.$
- C: changes the horizontal position of the sine wave by C in the opposite direction to its sign (ie. backwards if C is positive).
- D: changes the vertical position of the sine wave by D units (upwards if D is positive).

Exercises

3. Sketch the graphs of the following functions:

(a) $y = 1 + \sin x$ (b) $y = 2\cos x$ (c) $y = \sin\left(x + \frac{\pi}{4}\right)$ (d) $y = \cos 2x$

4. [No answers given] Sketch the graphs of the following functions:

(a)
$$y = -\sin x$$
 (b) $y = 2 + \cos x$ (c) $y = \cos \left(x - \frac{\pi}{6}\right)$ (d) $y = -\frac{1}{2}\cos x$
(e) $y = 2\sin 3x$

5. Find the values of A, B, C, D, E and F for $y = A \cos Bx + C$ given that it has the following graph.

Trigonometric Equations

Example: Find all solutions to $2\sin x + \sqrt{3} = 0$.

Re-arranging this equation gives

$$\sin x = -\frac{\sqrt{3}}{2}$$

We know that $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ (first quadrant of unit circle) so, by symmetry

ie. $\sin \frac{4\pi}{3} = -\frac{\sqrt{3}}{2}$ or $\sin \frac{5\pi}{3} = -\frac{\sqrt{3}}{2}$.

Since there is no restriction on x, $2\pi + \frac{4\pi}{3}$ is also a solution since the cycle repeats once we travel all the way around the circle. In fact, the complete solution is

$$x = 2k\pi + \frac{4\pi}{3} \quad \text{or} \quad 2k\pi + \frac{5\pi}{3}$$

where k is any integer.

Exercises

- 6. Find all solutions of the following equations (you'll need a calculator for (a), (b) and (d)):
 - (a) $\cos x = -0.7$ (b) $\sin 2x = 0.4$ (c) $\cos x = \sin x$ (d) $\tan 3x = 2$
- 7. Sketch the graph of $y = 4 \cos 2x$ and use it to find the number of solutions, in the domain $0 \le x \le 2\pi$, to the simultaneous equations

$$y = 4\cos 2x$$
 and $4y = x$

Trigonometric Identities

Since the point $P(\cos\theta, \sin\theta)$ was defined to lie on the unit circle, it follows that (by Pythagorus) that

$$\cos^2\theta + \sin^2\theta = 1$$

From this simple identity we can easily derive others. For example, if we divide through by $\cos^2\theta$ we get

$$1 + \tan^2 \theta = \sec^2 \theta$$

and, if we divide through by $\sin^2 \theta$ we get

$$\cot^2\theta + 1 = \csc^2\theta.$$

Another class of trigonometric identities are the *addition formulae* which are listed here without proof:

> sin(A+B) = sin A cos B + cos A sin Bcos(A+B) = cos A cos B - sin A sin B

From these may be derived a number of other formulae:

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos 2\theta = \cos^2\theta - \sin^2\theta$$

$$= 1 - 2\sin^2\theta$$

or $2\cos^2\theta - 1$ using $\cos^2\theta + \sin^2\theta = 1$

Exercises

- 8. Rewrite $\sin\theta\cos\theta$ in terms of $\sin 2\theta$.
- 9. Rewrite $\sin^2 \theta$ in terms of $\cos 2\theta$.
- 10. Use the unit circle to show that

$$\sin(-B) = -\sin(B)$$
 and $\cos(-B) = \cos(B)$.

Hence, use the addition formulae to derive the subtraction formulae

 $\sin(A-B)$ and $\cos(A-B)$.

ANSWERS

