USEFUL FACTS ABOUT ANGLES

By the Maths Learning Centre, University of Adelaide

The Basics		
When angles share a vertex and fill one side of a line, they add to 180°.	$\frac{\beta}{\alpha} \gamma \qquad \qquad \alpha + \beta + \gamma = 180^{\circ}$	
When angles share a vertex and fill the space around a point, they add to 360°.	$\frac{\alpha}{\delta} \frac{\beta}{\gamma} \qquad \alpha + \beta + \gamma + \delta = 360^{\circ}$	
When two lines cross, opposite angles are equal.	$\begin{array}{c} & \beta \\ \alpha \\ \beta \end{array}$	

Parallel Lines		
When a line crosses parallel lines, alternate angles are equal.	$ \xrightarrow{\alpha} \rightarrow \alpha \rightarrow$	
When a line crosses parallel lines, corresponding angles are equal.	$\xrightarrow{\beta}$	$ \xrightarrow{\beta \alpha \atop \beta \end{array} $
When a line crosses parallel lines, co-interior angles add to 180°.	$\begin{array}{c} & & & \\ & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	$\alpha + \beta = 180^{\circ}$

Shapes		
The angles in any triangle add to 180°.	$\alpha \qquad \gamma \qquad \qquad \alpha + \beta + \gamma = 180^{\circ}$	
The angles in any quadrilateral add to 360°.	$\beta \qquad \gamma \qquad $	
The angles in any polygon with n sides add to $(n-2) \times 180^{\circ}$.	Angle sum = $(n-2) \times 180^{\circ}$	

USEFUL FACTS ABOUT ANGLES

By the Maths Learning Centre, University of Adelaide

Triangles		
The angles in any triangle add to 180°.	$\alpha + \beta + \gamma = 180^{\circ}$	
In a right-angled triangle, the two smaller angles add to 90°.	$\alpha + \beta = 90^{\circ}$	
In a triangle, the largest angle is opposite the longest side, and the smallest angle is opposite the shortest side.	$c \qquad b \qquad a \ge b \ge c \Rightarrow a \ge \beta \ge \gamma$	
In an isosceles triangle (two sides equal), the angles opposite the equal sides are equal.		
In an equilateral triangle (all sides equal), the angles are all 60°.	60° 60° 60°	

Circles	
In a circle, all the angles subtended at the edge by the same chord are equal.	α α α
In a circle, the angle subtended at the centre by a chord is twice the angle subtended at the edge.	
The angle subtended in a semicircle is a right angle.	
At a point on the edge of a circle, the angle between the radius and the tangent is a right angle.	