MECHANISMS OF VASCULAR DISEASE:

A REFERENCE BOOK FOR VASCULAR SPECIALISTS

Edited by Robert Fitridge and Matthew Thompson Completely Updated Edition 2011

BARR SMITH PRESS

Mechanisms of Vascular Disease

Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists

Robert Fitridge

The University of Adelaide, The Queen Elizabeth Hospital, Woodville, Australia

Matthew Thompson St George's Hospital Medical School, London, UK

BARR SMITH PRESS

An imprint of The University of Adelaide Press

Published in Adelaide by

The University of Adelaide, Barr Smith Press Barr Smith Library The University of Adelaide South Australia 5005 press@adelaide.edu.au www.adelaide.edu.au/press

The University of Adelaide Press publishes peer-reviewed scholarly works by staff via Open Access online editions and print editions.

The Barr Smith Press is an imprint of the University of Adelaide Press, reserved for scholarly works which are not available in Open Access, as well as titles of interest to the University and its associates. The Barr Smith Press logo features a woodcut of the original Barr Smith Library entrance.

© The Contributors 2011

This book is copyright. Apart from any fair dealing for the purposes of private study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission. Address all inquiries to the Director at the above address.

This CIP cataloguing for this work is as follows;

Mechanisms of vascular disease : a reference book for vascular surgeons / Robert Fitridge, Matthew Thompson, [editors].

- 1. Blood vessels, Diseases.
- 2. Blood vessels, Surgery.
- I. Fitridge, Robert
- II. Thompson, M. M.

For the full Cataloguing-in-Publication data please contact National Library of Australia: cip@nla.gov.au

ISBN (paperback) 978-0-9871718-2-5

Book design: Midland Typesetters

Cover design: Emma Spoehr, based on a diagram by Dave Heinrich of the Medical Illustration and Media Unit, Flinders Medical Centre

Paperback edition printed by Griffin Press, South Australia

Table of Contents

Contributors vii Detailed Contents xi

- 1. Endothelium 1 Paul Kerr, Raymond Tam, Frances Plane (Calgary, Canada)
- Vascular smooth muscle structure and function 13 David Wilson (Adelaide, Australia)
- 3. Atherosclerosis 25 Gillian Cockerill, Qingbo Xu (London, UK)
- 4. Mechanisms of plaque rupture 43 Ian Loftus (London, UK)
- Current and emerging therapies in atheroprotection 79 Stephen Nicholls, Rishi Puri (Cleveland, USA)
- Molecular approaches to revascularisation in peripheral vascular disease 103 Greg McMahon, Mark McCarthy (Leicester, UK)
- Biology of restenosis and targets for intervention 115 *Richard Kenagy (Seattle, USA)*
- 8. Vascular arterial haemodynamics 153 Michael Lawrence-Brown, Kurt Liffman, James Semmens, Ilija Sutalo (Melbourne & Perth, Australia)
- 9. Physiological haemostasis 177 Simon McRae (Adelaide, Australia)
- 10. Hypercoagulable states 189 Simon McRae (Adelaide, Australia)
- 11. Platelets in the pathogenesis of vascular disease and their role as a therapeutic

target 201 Sandeep Prabhu, Rahul Sharma, Karlheinz Peter (Melbourne, Australia)

- 12. Pathogenesis of aortic aneurysms 227 Jonathan Golledge, Guo-Ping Shi, Paul Norman (Townsville & Perth, Australia; Boston, USA)
- 13. Pharmacological treatment of aneurysms 247 Matthew Thompson, Janet Powell (London, UK)
- Aortic dissection and connective tissue disorders 255 Mark Hamilton (Adelaide, Australia)
- 15. Biomarkers in vascular disease 277 Ian Nordon, Robert Hinchliffe (London, UK)
- Pathophysiology and principles of management of vasculitis and Raynaud's phenomenon 295 *Martin Veller (Johannesburg, South Africa)*
- 17. SIRS, sepsis and multiorgan failure 315 Vishwanath Biradar, John Moran (Adelaide, Australia)
- Pathophysiology of reperfusion injury 331 Prue Cowled, Robert Fitridge (Adelaide, Australia)
- 19. Compartment syndrome 351 Edward Choke, Robert Sayers, Matthew Bown (Leicester, UK)
- 20. Pathophysiology of pain 375 Stephan Schug, Helen Daly, Kathryn Stannard (Perth, Australia)

- 21. Postamputation pain 389 Stephan Schug, Gail Gillespie (Perth, Australia)
- 22. Treatment of neuropathic pain 401 Stephan Schug, Kathryn Stannard (Perth, Australia)
- 23. Principles of wound healing 423 Gregory Schultz, Gloria Chin, Lyle Moldawer, Robert Diegelmann (Florida, USA)
- 24. Pathophysiology and principles of varicose veins 451 Andrew Bradbury (Birmingham, UK)
- Chronic venous insufficiency and leg ulceration: Principles and vascular biology 459 *Michael Stacey (Perth, Australia)*

- Pathophysiology and principles of management of the diabetic foot 475 David Armstrong, Timothy Fisher, Brian Lepow, Matthew White, Joseph Mills (Tucson, USA)
- Lymphoedema Principles, genetics and pathophysiology 497 *Matt Waltham (London, UK)*
- 28. Graft materials past and future 511 Mital Desai, George Hamilton (London, UK)
- 29. Pathophysiology of vascular graft infections 537 *Mauro Vicaretti (Sydney, Australia)*

Index 549

List of Contributors

David G Armstrong The University of Arizona Southern Arizona Limb Salvage Alliance Tucson, AZ USA

Vishwanath Biradar Intensive Care Unit The Queen Elizabeth Hospital Woodville, SA Australia

Matthew Bown Department of Vascular Surgery University of Leicester Leicester UK

Andrew W Bradbury University Department of Vascular Surgery Birmingham Heartlands Hospital Birmingham UK

Edward Choke Department of Vascular Surgery University of Leicester Leicester UK

Gillian Cockerill Department of Clinical Sciences St George's Hospital Medical School London UK Prue Cowled Department of Surgery University of Adelaide The Queen Elizabeth Hospital Woodville, SA Australia

Helen Daly Royal Perth Hospital Perth, WA Australia

Mital Desai University Department of Vascular Surgery Royal Free Hospital University College London UK

Robert F Diegelmann Department of Biochemistry Medical College of Virginia Richmond, VA USA

Timothy K Fisher Rashid Centre for Diabetes and Research Sheikh Khalifa Hospital Ajmon UAE

Robert A Fitridge Department of Surgery University of Adelaide The Queen Elizabeth Hospital Woodville, SA Australia Gail Gillespie Royal Perth Hospital Perth, WA Australia

Jonathan Golledge Vascular Biology Unit School of Medicine & Dentistry James Cook University Townsville, QLD Australia

George Hamilton University Department of Vascular Surgery Royal Free Hospital University College London UK

Mark Hamilton Department of Surgery University of Adelaide The Queen Elizabeth Hospital Woodville, SA Australia

Robert J Hinchliffe St George's Vascular Institute St George's Hospital London UK

Richard D Kenagy Department of Surgery University of Washington Seattle, WA USA

Paul Kerr Department of Pharmacology University of Alberta Alberta Canada Michael MD Lawrence-Brown Curtin Health Innovation Research Institute Curtin University Perth, WA Australia

Brian Lepow The University of Arizona Department of Surgery Southern Arizona Limb Salvage Alliance Tucson, AZ USA

Kurt Liffman CSIRO Material Science & Engineering and School of Mathematical Sciences Monash University Melbourne, Vic Australia

Ian Loftus Department of Vascular Surgery St George's Hospital London UK

Mark J McCarthy Department of Surgery and Cardiovascular Sciences University of Leicester Leicester UK

Greg S McMahon Department of Surgery and Cardiovascular Sciences University of Leicester Leicester UK

Simon McRae Adult Haemophilia Treatment Centre SA Pathology Adelaide, SA Australia Joseph L Mills The University of Arizona Southern Arizona Limb Salvage Alliance Tucson, AZ USA

Lyle Moldawer Department of Surgery University of Florida Gainesville, FL USA

John L Moran Faculty of Health Sciences University of Adelaide The Queen Elizabeth Hospital Woodville, SA Australia

Stephen Nicholls The Heart and Vascular Institute Cleveland Clinic Cleveland, OH USA

Ian M Nordon St George's Vascular Institute St George's Hospital London UK

Paul E Norman School of Surgery University of WA Fremantle, WA Australia

Karlheinz Peter Baker IDI Heart & Diabetes Institute Melbourne, Vic Australia

Frances Plane Department of Pharmacology University of Alberta Alberta Canada Janet T Powell Imperial College London UK

Sandeep Prabhu Baker IDI Heart & Diabetes Institute Alfred Hospital Melbourne, Vic Australia

Rishi Puri The Heart and Vascular Institute Cleveland Clinic Cleveland, OH USA

Stephan A Schug Royal Perth Hospital Perth, WA Australia

Gregory S Schultz Department of Obstetrics and Gynaecology University of Florida Gainesville, FL USA

Rahul Sharma Baker IDI Heart & Diabetes Institute Alfred Hospital Melbourne, Vic Australia

Guo-Ping Shi Department of Cardiovascular Medicine Brigham & Women's Hospital Harvard Medical School Boston, MA USA

Michael Stacey University Department of Surgery Fremantle Hospital Fremantle, WA Australia Ilija D Sutalo CSIRO Material Science & Engineering and Curtin Health Innovation Research Instutute Curtin University Highett, Vic

Raymond Tam Department of Pharmacology University of Alberta Alberta Canada

Matthew Thompson St Georges Hospital Medical School London UK

Martin Veller Department of Surgery University of Witwatersrand Johannesburg South Africa

Mauro Vicaretti Department of Vascular Surgery Westmead Hospital Westmead, NSW Australia Matt Waltham Academic Department of Surgery St Thomas' Hospital London UK

Matthew L White Vascular and Endovascular Surgery University of Arizona Tucson, AZ USA

David P Wilson School of Medical Sciences Discipline of Physiology University of Adelaide Adelaide SA Australia

Qingbo Xu Department of Cardiology Kings College University of London UK

Detailed Contents

CHAPTER 1 – ENDOTHELIUM

Paul Kerr, Raymond Tam, Frances Plane

Introduction 1 Endothelium-dependent regulation of vascular tone 2 Angiogenesis 7 Haemostasis 8 Inflammation 9 Conclusions 10 References

CHAPTER 2 – VASCULAR SMOOTH MUSCLE STRUCTURE AND FUNCTION

David Wilson

Introduction 13 Smooth muscle (vascular) structure Cytoskeleton 14 Contractile myofilament Functional regulation of vascular smooth muscle: Neuronal, hormonal, receptor mediated 15 Smooth muscle function 17 Myofilament basis of smooth muscle contraction and relaxation Smooth muscle contraction and relaxation 18 Ion channels important in the regulation of smooth muscle function Regulation of cellular Ca²⁺ Sources of cytosolic Ca²⁺ entry 19 Potassium channels Endothelial regulation of smooth muscle vasodilatation 20

Smooth muscle proliferation and vascular remodeling 20 Summary 22 References

CHAPTER 3 – ATHEROSCLEROSIS

Gillian Cockerill, Qingbo Xu

Introduction 25 Atherosclerotic lesions 26 Fatty streaks Plaque or atheroma Hypercholesterolemia and oxidised-LDL 27High-density lipoproteins role in atheroprotection 28 Hypertension and biomechanical stress 29 Biomechanical stress-induced cell death Biomechanical stress and inflammation 31 Biomechanical stress-induced smooth muscle cell proliferation 32 Infections and heat shock proteins Infections Heat shock proteins 33 Infections and HSP expression Infections, sHSP and innate immuntiy 34 Immune responses 36 MHC class II antigens and T cells Oxidised LDL as a candidate antigen HSP60 as a candidate antigen 37 B2-gylcoprotein Ib as a candidate antigen Inflammation

C-reactive protein 38 CD40/CD40L

Summary and perspectives 39 References

CHAPTER 4 – MECHANSIMS OF PLAQUE RUPTURE

Ian Loftus

Introduction 43 Evidence for the 'plaque rupture theory' 44 Coronary circulation Cerebral circulation The role of individual components of the arterial wall The endothelium 45 The lipid core 47 The cap of the plaque 49 Smooth muscle cells and collagen production 50 Macrophages and collagen degradation 51 The vessel lumen 56 The role of angiogenesis in plaque rupture The role of infectious agents in plaque rupture 57 Risk prediction of plaque instability 58 Imaging Blood markers 59 Therapy aimed at plaque stabilisation HMG Co-A reductase inhibitors 60 MMP inhibition Tissue inhibitors of metalloproteinases (TIMPs) 61 Synthetic MMP inhibitors Doxycycline ACE inhibitors Summary 62 References 63

CHAPTER 5 – CURRENT AND EMERGING THERAPIES IN ATHEROPROTECTION

Stephen Nicholls, Rishi Puri

Background 79 Pathology Risk factor modification 80 Statins, LDL lowering and C-reactive protein The complexity of HDL 84 The controversy of trigylcerides 87 Hypertension Risk factor modification in the diabetic patient 89 Glycaemic control Global risk factor reduction in diabetics 91 The metabolic syndrome 92 Future targets 93 Conclusion References 94

CHAPTER 6 – MOLECULAR APPROACHES TO REVASCULARISATION IN PERIPHERAL VASCULAR DISEASE

Greg S McMahon, Mark J McCarthy

Introduction 103 Mechanisms of vascular growth Vasculogenesis Angiogenesis 104 Neovessel maturation 105 Microvascular network maturation 106 Arteriogenesis Therapeutic induction of vascular growth 107 Delivery of molecular activators of vascular growth Angiogenic activators 108 Arteriogenic activators 109 Clinical trials for angiogenic therapy of peripheral vascular disease Conclusions 110 References

CHAPTER 7 – BIOLOGY OF RESTENOSIS AND TARGETS FOR INTERVENTION

Richard Kenagy

Introduction 115 Mechanisms of restenosis Thrombosis 116 Remodelling Intimal hyperplasia 123 Sequence of events after injury Origin of intimal cells 125 Inflammation 126 Role of ECM production 127 The contribution of specific factors to restenosis Growth factors/cytokines Inhibitors 128 Coagulation and fibrinolytic factors 129 Matrix metalloproteinases Extracellular matrix/receptors Targets for intervention 130 Intracellular signalling molecules mTOR and microtubules Transcription factors miRNA 131 Inflammation targets Brachytherapy Extracellular targets and cell-based therapies Angiotensin pathway Cell-based therapies 132 Differential effects on endothelium and SMCs Delivery devices Prevention versus reversal of restenosis Conclusions 133 References 134

CHAPTER 8 – VASCULAR ARTERIAL HAEMODYNAMICS

Michael Lawrence Brown, Kurt Liffman, James Semmens, Ilija Sutalo

Introduction 153

Laplace's law of wall of tension 154 Newtonian fluid 155 Non-Newtonian fluid Poiseuille flow 158 Bernoulli's equation Young's modulus and pulsatile flow 159 Mass conversion 161 Reynold's number Arterial dissection, collateral circulation and competing flows 163 Shear stress and pressure 164 Forces on graft systems 165 Case 1 – The cylindrical graft 168 Case 2 – The windsock graft Case 3 - The curved graft 169 Case 4 – The symmetric bifurcated graft Computational modelling 170 Recent development and future directions 171 Conclusions 172 References 173

CHAPTER 9 – PHYSIOLOGICAL HAEMOSTASIS

Simon McRae

Introduction 177 Primary haemostasis Platelets Platelet adhesion Platelet activation and shape change 179 Platelet aggregation 180 Interactions between primary and secondary haemostasis 181 Secondary haemostasis The coagulation cascade 182 Initiation 183 Amplification Propagation 184 Normal inhibitors of coagulation Fibrinolysis 185 Conclusions 186 References

CHAPTER 10 – HYPERCOAGULABLE STATES

Simon McRae

Introduction 189 Classification of thrombophilia Inherited thrombophilia 190 Type 1 conditions Antithrombin deficiency Protein C and Protein S deficiency Type 2 conditions 191 Factor V Leiden The prothrombin (G20210A) gene mutation FVL/PGM compound heterozygotes Other inherited conditions Acquired thrombophilia 192 Antiphospholipid antibodies Heparin induced thrombocytopenia Myeloproliferative disorders 193 Potential reasons for performing thrombophilia testing Patients with venous thrombosis and their relatives Providing an understanding of the aetiology of a thrombotic event Determining risk of recurrence and therefore optimal duration of anticoagulation 194 Determining the need for primary prophylaxis in asymptomatic family members 195 Making decisions regarding the use of the oral contraceptive pill 196 Determining the need for thromboprophylaxis during pregnancy Patients with arterial thrombosis Potential detrimental effects of thrombophilia testing 197 Conclusion References

CHAPTER 11 – PLATELETS IN THE PATHOGENESIS OF

VASCULAR DISEASE AND THEIR ROLE AS A THERAPEUTIC TARGET

Sandeep Prabhu, Rahul Sharma, Karlheinz Peter

Introduction 201 Platelet function - Adhesion and activation Platelet adhesion 202 Platelet activation 203 Mediators of platelet activation and 'outside in' signalling Thrombin and collagen 204 Adenosine diphosphate (ADP) Thromboxane A2 (TXA2) Adrenaline 206 Second messenger systems 207 Physiological consequences of platelet activation The GP IIb/IIIa receptor and 'insideout' signalling Granule exocytosis 208 Activation-induced conformational change of platelets Platelets and atherosclerosis 209 Role of platelets in the initiation of the atherosclerosis Role of the platelets in the progression of the atherosclerosis Role of platelets in vulnerable plaques and plaque rupture Current and future anti-platelet agents 210Aspirin (salicylic acid) Thienopyridines 211 Clopidogrel Prasugrel 213 Ticlopidine Ticagrelor GPIIb/IIIa Antagonists Other anti-platelet agents and promising new deleopments 214 Platelet function testing 215 Light-transmission aggregometry

Whole blood aggregometry 217 VerifyNow® Assay Flow cytometry 218 **References**

CHAPTER 12 – PATHOGENESIS OF AORTIC ANEURYSMS

Jonathan Golledge, Guo-Ping Shi, Paul E Norman

Introduction 227 Differences between thoracic and abdominal aortic aneurysms 228 Summary of current theories and stages of AAA evolution Atherosclerosis and AAA Immune mechanisms in AAA 229 Extracellular matrix dysfunction 232 Infection 233 **Biomechanical forces** Angiogenesis Intra-luminal thrombus Extracellular matrix proteolysis 234 Genetics 236 AAA rupture 237 Biomechanical factors in aneurysms rupture The role of enzymes in AAA rupture Role of intraluminal thrombus in aneurysm rupture 238 Future research References

CHAPTER 13 – PHARMACOLOGICAL TREATMENT OF ANEURYSMS

Matthew Thompson, Janet T Powell

Background 247 Screening programmes Pathophysiology 248 Therapeutic strategies Beta blockade Modification of the inflammatory response 249 Non-steroidal anti-inflammatories Matrix metalloproteinase (MMP) inhibition Anti-chlamydial therapy 250 Drugs acting on the renin/angiotensin axis HMG Co-A reductase inhibitors 251 The future – Data from recent experimental studies References

CHAPTER 14 – PATHOPHYSIOLOGY OF AORTIC DISSECTION AND CONNECTIVE TISSUE DISORDERS

Mark Hamilton

Introduction 255 Embryology of thoracic aorta and arch vessels Haemodynamics of thoracic compared to abdominal aorta 257 Sizes of normal aorta Classification of aortic syndromes Acute/Chronic DeBakey classification of class 1 dissection – Type 1, 2, and 3 Stanford classification 258 European task force Pathogenesis of thoracic aortic dissection Classical thoracic aortic dissection (class 1 dissection) 260 Intramural haematoma (class 2 aortic dissection) 261 Penetrating aortic ulcer (class 4 aortic dissection) 262 Complications of acute aortic syndromes 263 Visceral ischaemia /malperfusion syndromes Fate of the false lumen Aneurysmal degeneration and rupture 264 Connective tissue disorders and acute

aortic syndromes

xvi

Marfan syndrome Fibrillin and Marfan syndrome 265 The role of transforming growth factor beta in development of the vascular system in health and disease 266 Ehlers-Danlos syndrome 267 Diagnosis of Ehlers-Danlos syndrome 268 Loeys-Deitz syndrome 270 Familial thoracic aortic aneurysm disease 271 Bicuspid aortic valve 273 Turners Syndrome Summary 274 Reference list

CHAPTER 15 – BIOMARKERS IN VASCULAR DISEASE

Ian M Nordon, Robert J Hinchliffe

Introduction 277 What is a biomarker? Types of biomarkers A classical clinical example 278 Potential value of biomarkers in vascular disease 279 Biomarker discovery steps 280 AAA biomarkers Circulating extracellular matrix markers 281 Matrix-degrading enzymes 283 Proteins associated with thrombosis Markers of inflammation 284 Biomarkers of AAA rupture 285 Biomarkers following endovascular repair Inflammation 287 Lipid accumulation Apoptosis Thrombosis Proteolysis 288 Challenges in biomarkers discovery Future work Conclusion 289 References

CHAPTER 16 – PATHOPHYSIOLOGY AND PRINCIPLES OF MANAGEMENT OF VASCULITIS AND RAYNAUD'S PHENOMENON

Martin Veller

Vasculitides 295 Introduction Classification of vasculitides 296 Clinical presentation of vasculitides Investigations of vasculitides Principles of treatment of vasculitides 297 The vasculitides of specific interest to vascular surgeons 298 Giant cell arteritis Takayasu's arteritis 299 Thromboangitis obliterans (Buerger's disease) 300 Behcet's disease 301 Polyarteritis nodosa 302 Vasculitides secondary to connective tissue diseases 303 Systemic lupus erythematosus (SLE) Antiphospholipid antibody syndrome (APS) 304 Rheumatoid arthritis 305 Scleroderma Infective vasculitides 306 Human immunodeficiency virus (HIV) Pathophysiology and principles of Raynaud's phenomenon 307 Prevalence of Raynaud's phenomenon 308 Clinical findings in Raynaud's phenomenon 309 Diagnosis of Raynaud's phenomenon Prognosis 310 Treatment Recommendations 311 References 312

CHAPTER 17 - SIRS, SEPSIS AND

MULTIORGAN FAILURE

Vishwanath Biradar, John Moran

Epidemiology 315 Historical perspectives and definition 316 Risk factors for sepsis 317 Causative agents Pathophysiology of sepsis innate immunity and toll-like receptors (TLRs) 319 Proinflammatory response Coagulation cascade Multiorgan dysfunction syndrome (MODS) 320 Epithelial and endothelial dysfunction Immune suppression and apoptosis Sepsis, circulatory failure and organ dysfunction Management 322 Steroids 323 Recombinant human activated protein C (rhAPC) 324 Glucose control 325 Renal replacement therapy 3-hydroxy-3-methylglutaryl-coenzyme reductase inhibitors (HMG-CoA) 326 Other adjuvant therapies in sepsis Cytokines and anticytokine therapies Pooled immunoglobulin (IVIG) Acute respiratory distress syndrome (ARDS) 327 References

CHAPTER 18 – Pathophysiology of

REPERFUSION INJURY Prue Cowled, Rob Fitridge

Introduction 331 Ischaemia ATP and mitochondrial function Gene expression during ischaemia 332 Reperfusion 333 Reactive oxygen species

Eicosanoids 334 Nitric Oxide 335 Endothelin 336 Cytokines Neutrophil and endothelial interactions 338 Complement activation 340 Tissue destruction 341 Proteases and metalloproteinases Apoptotic cell death during ischaemiareperfusion injury No-reflow phenomenon 342 Therapeutic approaches to IRI Ischaemic preconditioning Ischaemic post-conditioning 343 Conditioning effects of volatile anaesthetics Pharmacological treatments 344 Summary 345 References

CHAPTER 19 – COMPARTMENT SYNDROME

Edward Choke, Robert Sayers, Matthew Bown

Definition 351 Acute limb compartment syndrome Incidence Anatomy/physiology 352 Aetiology/pathophysiology Clinical presentation 354 Investigation 355 Treatment 357 Complication of LCS 359 Outcome 360 Acute abdominal compartment syndrome Incidence 361 Actiology Pathological effects of raised intraabdominal pressure 362 Clinical presentation 363 Investigation Treatment 364 Complications of surgical decompression

xvii

Outcome 367 References 368

CHAPTER 20 – PATHOPHYSIOLOGY OF PAIN

Stephan Schug, Helen Daly, Kathryn Stannard

Introduction 375 Peripheral mechanisms Nociception/transduction Conduction 376 Spinal cord mechanisms Ascending systems 377 Descending control Pain modulation 378 Peripheral sensation Central sensitisation in the dorsal horn Neuropathic pain 379 Mechanisms of neuropathic pain Peripheral mechanisms Spontaneous ectopic discharge Altered gene expression Spared sensory neurons Involvement of the sympathetic nervous system 380 Collateral sprouting Effects of bradykinin Central mechanisms Wind up Central sensitization 381 Central disinhibition Expansion in receptive field size (recuruitment) Immediate early gene expression Anatomical re-organisation of the spinal cord Contribution of glial cells to pain conditions 382 Symptoms of neuropathic pain Stimulus-dependent pain Stimulus-independent pain 383 Sympathetically maintained pain (SMP) Neuropathic pain syndromes

Peripheral neuropathies Central neuropathies 385 References

CHAPTER 21 – POST-AMPUTATION PAIN

Stephan Schug, Gail Gillespie

Introduction 389 Classification and incidence of postamputation pain syndromes Stump pain Phantom sensation 390 Phantom limb pain Pathophysiology of post-amputation pain syndromes Peripheral factors Spinal factors 391 Supraspinal factors Current pathophysiological model of postamputation pain syndromes 392 Prevention of post-amputation pain Perioperative lumbar epidural blockade Peripheral nerve blockade 393 NMDA antagonists Evaluation of the patient with postamputation pain syndromes Examination Therapy of post-amputation pain syndromes 394 Calcitonin Ketamine Analgesic and Co-analgesic compounds Opioids 395 Gabapentin Clonazepam Lidocaine Carbamazepine Tricyclic antidepressants (TCA) Selective serotonin reuptake inhibitors Baclofen Capsaicin Symptomatic treatment of pain components 396 Neuropharmacological therapies

Invasive therapies Electroconvulsive therapy (ECT) Nerve blockade Spinal cord stimulation Implantable intrathecal delivery systems Dorsal root entry zone (DREZ) lesions Psychological therapy 397 Future aims References

CHAPTER 22 – TREATMENT OF NEUROPATHIC PAIN

Stephan Schug, Kathryn Stannard

Introduction 401 Principles of treatment Pharmacological treatment 402 Opioids Recommendations for clinical use of opioids Tramadol Mechanism of action Efficacy 403 Adverse effects Recommendations for clinical use of tramadol in neuropathic pain Antidepressants Tricyclic antidepressants (TCAs) Mechanism of action 404 Adverse effects Selective serotonin re-uptake inhibitors (SSRIs) Serotonin/Noradrenaline reuptake inhibitors (SNRIs) 405 Recommendations for clinical use of antidepressants as analgesics Anticonvulsants Mechanism of action 406 Individual medications Clonazepam Gabapentin Pregabalin 407 Carbamazepine Sodium valproate 408

Phenytoin Lamotrigene Recommendations for clinical use of anticonvulsants as analgesics Local anaesthetics and antiarrhythmics 409 Mechanism of action Lignocaine Mexiletine Recommendations for clinical use of lignocaine and mexiletine in neuropathic pain N-methyl-D-aspartate-receptor antagonists (NMDA) Ketamine 410 Other NMDA antagonists Miscellaneous compounds for systemic use Clonidine Efficacy Baclofen Levodopa 411 Cannabinoids Topical treatments Lignocaine 5% medicated plaster Capsaicin 412 Mechanism of action Efficacy Non-pharmacological therapy Transcutaneous electrical nerve stimulation (TENS) Spinal cord stimulation (SCS) 413 Sympathetic nerve blocks Neurosurgical destructive techniques Cognitive behavious therapy References 414

CHAPTER 23 – PRINCIPLES OF WOUND HEALING

Gregory Schultz, Gloria Chin, Lyle Moldawer, Robert Diegelmann

Introduction 423 Phases of acute wound healing Haemostasis

Inflammation 426 Neutrophils 427 Macrophages 428 Proliferative phase 429 Fibroblast migration 430 Collagen and extracellular matrix production Angiogenesis 431 Granulation 432 Epithelialization Remodelling 433 Summary of acute wound healing 435 Comparison of acute and chronic wounds Normal and pathological responses to injury Biochemical differences in the molecular environments of healing and chronic wounds 436 Biological differences in the response of chronic wound cells to growth factors 439 From bench to bedside Role of endocrine hormones in the regulation of wound healing Molecular basis of chronic non-healing wounds Chronic venous stasis ulcers 441 Pressure ulcers Future concepts for the treatment of chronic wounds 442 Bacterial biofilms in chronic wounds 443 Conclusion 445 References

CHAPTER 24 – PATHOPHYSIOLOGY AND PRINCIPLES OF MANAGEMENT OF VARICOSE VEINS

Andrew Bradbury

Introduction 451 Anatomy Histology 452 Physiology Varicose veins 453 Valvular abnormalities Muscle pump failure 455 Venous recirculation Recurrent varicose veins New varicose veins Persistent varicose veins True recurrent varicose veins 456 Cellular and molecular biology of varicose veins Conclusion 457 References

CHAPTER 25 – CHRONIC VENOUS INSUFFICIENCY AND LEG ULCERATION: PRINCIPLES AND VASCULAR BIOLOGY

Michael Stacey

Definitions 459 Chronic venous insuffiency Leg ulceration Assessment of cause of leg ulceration 460 Epidemiology 461 Pathophysiology Venous abnormality Effect of ambulatory venous hypertension on the tissues in the leg 463 Influence of venous disease on the wound healing process 465 Genetic associations with venous ulceration 466 Assessment of venous function 467 Treatment of venous ulceration Compression therapy Dressings 468 Surgery Prevention of venous ulcer recurrence 470Sclerotherapy and other techniques to obliterate surface and perforating veins Other therapies 471 References

CHAPTER 26 – Pathophysiology and Principles of Management

David Armstrong, Timothy Fisher, Brian Lepow, Matthew White, Joseph Mills

OF THE DIABETIC FOOT

Introduction 475 Pathophysiology of the diabetic foot 476 Neuropathy Structural abnormalities/gait abnormalities Angiopathy 478 Diagnosis History and rapid visual screening Neurological examination 479 Monofilament testing Vibration testing Dermatologic examination 480 Anatomy of occlusive disease - vascular examination Prediction of wound healing: assessment of perfusion 481 Arterial imaging Soft tissue imaging 482 Classification systems 483 Diabetes mellitus foot risk classification University of Texas wound classification system Clinical problems and principles of management 484 Ulceration Epidemiology and risk factors Offloading Non-vascular surgical treatment 485 Class I – Elective 486 Class II - Prophylactic Class III – Curative Class IV – Emergency (urgent) Post-operative management Infections 487 Charcot arthopathy Prevention 490 Conclusion 492 References

CHAPTER 27 – LYMPHOEDEMA – PRINCIPLES, GENETICS AND PATHOPHYSIOLOGY

Matt Waltham

Introduction 497 Classification of lymphoedema Classification of primary lymphoedema 498 The genetics of lymphangiogensis in primary lymphoedema 500 Milroy's disease Lymphoedema – distichiasis syndrome 501 Hypotrichosis – lymphoedema – telangiectasia syndrome 502 Meige disease (primary non-syndromic lymphoedema) Other primary lymphoedema disorders 503 Structure and development of the lymphatic circulation Clinical aspects of lymphoedema 505 Summary References

CHAPTER 28 – GRAFT MATERIALS PAST AND FUTURE

Mital Desai, George Hamilton

The pathophysiology of graft healing 511 The peri-anastomotic area Healing of prosthetic grafts 512 The healing process of the anastomosis Graft porosity and permeability Physical properties of prosthetic materials 514 Tubular compliance Anastomotic compliance mismatch The compliance hypothesis of graft failure Synthetic grafts 515 Newer developments of Dacron grafts Modifications and newer developments of PTFE grafts 517 Polyurethane grafts

Newer developments of polyurethane vascular grafts 518 Biological vascular grafts 519 Newer developments of biological vascular grafts 520 Prosthetic graft modifications Modifications to reduce graft infection Modifications to improve patency 521 Nanocomposite grafts Endothelial cell seeding 522 Single stage seeding Two stage seeding Vascular tissue engineering Non-degradable polymer and cell seeding 523 Bioresorbable and biodegradable polymers Combined bioresorbable and tissue engineered grafts 524 Mechanical conditioning of seeded vascular cells Alternative scaffolds Tissue-engineered grafts 525 Graft materials for aortic endografts 526 The future References 527

CHAPTER 29 – PATHOPHYSIOLOGY OF VASCULAR GRAFT INFECTIONS

Mauro Vicaretti

Introduction 537 Natural history of prosthetic vascular graft infections Mechanism of graft contamination at operation 538 Pathogenesis of graft infections Bacteriology of vascular graft infections Investigations for detection of prosthetic graft infections 539 History and physical examination Laboratory investigations Diagnostic imaging 540 Management of prosthetic graft infections Prevention Reduction of prosthetic vascular graft infection with rifampicin bonded gelatin sealed Dacron 541 Established infection Antibiotic therapy Operative management Conclusion 542 References

Acknowledgements

The Editors gratefully acknowledge the outstanding contributions of each Author involved in this reference book. We would also like to acknowledge the invaluable efforts of Ms Sheona Page who has worked tirelessly on this project. We would also like to thank Prue Cowled PhD and Ms Cayley Wright for their assistance.

Abbreviation List

a1-Pl	a1-protease inhibitor
5-HT	5-Hydroxytryptamine/Serotonin
AAA	Abdominal aortic aneurysm
AAS	Acute aortic syndrome
AAV	Adeno-associated viruses
ACE	Angiotensin converting enzyme
ACS	Acute coronary syndrome
ACS	Abdominal compartment syndrome
ACTH	Adrenocorticotropic hormone
ADAMTS	A disintegrin and metalloproteinase with thrombospondin motifs
ADP	Adenosine diphosphate
AIDS	Acquired immune deficiency syndrome
ALI	Acute lung injury
AMP	Adenosine monophosphate
AMPA	α -amino-3 hydroxy-5-methylisoxazole
ANA	Anti-nuclear antibody
ANCA	Anti-neutrophil cytoplasmic antibody
AOD	Aortic occlusive disease
AP1	Activated protein 1
APC	Activated protein C
APC	Antigen presenting cell
APLAS	Antiphospholipid antibody syndrome
ApoAl	Apolipoprotein Al
ApoE	Apolipoprotein E
APS	Antiphospholipid antibody syndrome
APTT	Activated partial thromboplastin time

ARDS	Acute respiratory distress syndrome
AT	Antithrombin
ATP	Adenosine triphosphate
AVP	Ambulatory venous thrombosis
β2-GPI	β2-glycoprotein Ib
bFGF	Basic fibroblast growth factor
BKCa	Large conductance calcium activated potassium channel
BMPs	Bone morphogenetic proteins
BMS	Bare metal stent
CAD	Coronary artery disease
CaM	Calmodulin
CAM	Cell adhesion molecule
cAMP	Cyclic adenosine monophosphate
ССК	Cholecystokinin
cGMP	Cyclic guanine monophosphate
CD	Cluster of differentiation
CD40L	Cluster of differentiation 40 ligand
CEA	Carotid endarterectomy
CETP	Cholesteryl ester transfer protein
CFD	Computational fluid dynamics
CG	Cationized gelatin
CGRP	Calcitonic gene regulated peptide
CHD	Coronary heart disease
CI	Confidence interval
CIMT	Carotid intimal-media thickness
c-JNK	c-Jun N-terminal kinase
CK-MB	Creatinine kinase (Myocardial specific)
CNCP	Chronic noncancer pain
cNOS	Constitutive nitric oxygen synthase enzyme
COX-1	Cyclooxygenase-1
COX-2	Cyclooxygenase-2
CROW	Charcot restraint orthotic walker
CRRT	Continuous renal replacement therapy

CRPS	Complex regional pain syndromes
	complex regional pair syndromes
СТ	Computational tomography
СТА	Computed tomographic angiography
СТD	Connective tissue disorders
CTGF	Connective tissue growth factor
CYP	Cytochrome P450
CVD	Cardiovascular disease
CVI	Chronic venous insufficiency
DAG	Diacylglycerol
DES	Drug-eluting stent
DRG	Dorsal root ganglion
DNA	Deoxyribonucleic acid
DSA	Digital subtraction arteriography
DTS	Dense tubular system
DVT	Deep vein thrombosis
EC	Endothelial cell
ECM	Extracellular matrix
EDCF	Endothelium-derived contracting factor
EDH	Endothelium-dependent hyperpolarisation
EDS	Ehlers-Danlos syndrome
EET	Epoxyeicosatrienoic acids
ELAM-1	Endothelial-leukocyte adhesion molecule-1
ELG	Endoluminal grafts
ELISA	Enzyme linked immunosorbent assay
Ε _κ	Equilibrium potential
E _M	Membrane potential
eNOS	Endothelial nitric oxide synthase enzyme
EPC	Endothelial progenitor cells
EPCR	Endothelial protein C receptor
ePTFE	Expanded polytetrafluoroethylene
ERK	Extracellular signal-regulated kinase
ESR	Erythrocyte sedimentation rate

ET	Essential thrombocytosis
ET-1	Endothelin 1
EVAR	Endovascular aortic aneurysm repair
EVLA	Endovenous LASER ablation
FDA	Food and drug administration
FDPs	Fibrin degradation products (soluble)
FGF	Fibroblast growth factor
FGF-2	Fibroblast growth factor 2
FMN	Flavin mononucleotide
FVL	Factor V Leiden
GABA	Gamma-aminobutyric acid
GABA B	Gamma-aminobutyric acid subtype B
G-CSF	Granulocyte colony stimulating factor
GMCSF	Granulocyte-macrophage colony stimulating factor
GP	Glycoprotein
GPCR	G-protein coupled receptor
GSV	Great saphenous vein
HDL	High density lipoprotein
HDL-C	High density lipoprotein cholesterol
HIF	Hypoxia inducible factor
HIT	Heparin induced thrombocytopenia
HIV	Human immunodeficiency virus
HLA	Human leukocyte antigen
HMG Co-A	Hydroxymethylglutaryl coenzyme-A
HMW	High molecular weight
HPETE	Hydroperoxyeicosatetraenoic acid
HETE	Hydroxyeicosatetraenoic acids
HR	Hazard ratio
hsCRP	High-sensitive C-reactive protein
HSP	Heat shock protein
HUV	Human umbilical vein
IAH	Intra-abdominal hypertension

xxviii Mechanisms of Vascular Disease

IAP	Intra-abdominal pressure
IAPP	Intra-abdominal perfusion pressure
ICAM-1	Inter-cellular adhesion molecule-1
ICAM-2	Inter-cellular adhesion molecule-2
ICP	Intra-compartmental pressure
ICU	Intensive care unit
IFN	Interferon
IGF-1	Insulin-like growth factor-1
IHD	Ischemic heart disease
IL	Interleukin
IL-1	Interleukin-1
IL-1α	Interleukin-1 alpha
IL1-β	Interleukin-1 beta
IL-6	Interleukin-6
IL-8	Interleukin-8
ILT	Intraluminal thrombus
IKCa	Intermediate conductance calcium-activated potassium channels
IMH	Intramural haematoma
IMP	Inosine monophosphate
iNOS	Inducible nitric oxide synthase enzyme
IP(3)	1,4,5-inositol triphosphate
IRI	Ischemia reperfusion injury
IVIG	Intravenous pooled immunoglobulin
IVUS	Intravascular ultrasound
KGF	Keratinocyte growth factor
KGF-2	Keratinocyte growth factor-2
LAP	Latency associated peptide
LCS	Limb compartment syndrome
LDL	Low density lipoprotein
LDS	Loeys-Dietz syndrome
LLC	Large latent complex
LEC	Lymphatic endothelial cells

LFA-1	Lymphocyte function-associated antigen-1
LO	Lipoxygenase
LOX	Lysyl oxidase
LOPS	Loss of protective sensation
LPA	Lysophosphatidic acid
LPS	Lipopolysaccharide
LTA	Lipoteichoic acid
LTGFBP	Latent TGF binding protein
MAC-1	Macrophage-1 antigen
МАРК	Mitogen activated protein kinase
MCP-1	Monocyte chemoattractant protein-1
M-CSF	Macrophage-colony stimulating factor
MFS	Marfan syndrome
MHC	Major histocompatibility
MI	Myocardial infarction
MIP-1	Macrophage inflammatory protein-1
MLC ₂₀	Myosin light chain ₂₀
MLCK	Myosin light chain kinase
MLCP	Myosin light chain phosphatase
MMP	Matrix metalloproteinase
MODS	Multiple organ dysfunction syndrome
MRA	Magnetic resonance angiography
MRI	Magnetic resonance imaging
mRNA	Messenger RNA
MRSA	Methicillin resistant Staphylococcus aureus
MRSE	Methicillin resistant Staphylococcus epidermidis
MRTA	Magnetic resonance tomographic angiography
MTHFR	Methylenetetrahydrofolate reductase
MT-MMP	Membrane-type MMP
MVPS	Mitral valve prolapse syndrome
NADPH	Nicotinamide adenine dinucleotide phosphate
NGF	Nerve growth factor

Nuclear factor kappa B
Nitinol
Non-junctional perforators
N-methyl-D-aspartate
Number needed to harm
Number needed to treat
Nitric oxide
Nitric oxide synthase enzyme
Non-steroidal anti-inflammatory drug
Neovascularisation
Oestrogen/progesterone contraceptive pill
Osteopontin
Osteoprotegerin
Odds ratio
Oxidised low density lipoprotein
Peripheral arterial disease
Platelet activating factor
Plasminogen activator inhibitor
Plasminogen activator inhibitor-1
Protease activated receptor
Protease activated receptor-1
Protease activated receptor-4
Penetrating aortic ulcer
Protein C
Poly (carbonate-urea) urethane
Percutaneous coronary intervention (angioplasty)
Pulmonary capillary wedge pressure
Platelet-derived growth factor
Platelet-derived growth factor- β
Polydioxanone
Platelet-endothelial cell adhesion molecule-1
Pigment epithelium-derived factor
Paclitaxel-eluting stent

PET	Positron emission tomography
PF4	Platelet factor 4
PGI ₂	Prostacyclin
PGG ₂	Prostaglandin G ₂
PGH ₂	Prostaglandin H ₂
PGEl ₂ /PGl ₂	Prostaglandin I ₂
PGN	Peptidoglycan
PHN	Postherpetic neuropathy
PHZ	Para-anastomotic hyper-compliant zone
РІЗК	Phosphatidylinositol 3-kinase
PIP2	Phosphatidylinositol 4,5-bisphosphate
PLC	Phospholipase C
PLOD	Procollagen lysyl hydroxylase
PMCA	Plasma membrane Ca ²⁺ APTases
PMN	Polymorphonuclear leukocyte
POSS	Polyhedral oligomeric silsesquioxanes
PPAR	Peroxisomal proliferation activating receptor
PPI	Proton pump inhibitor
PRV	Polycythaemia rubra vera
PS	Protein S
PSGL-1	P-selectin glycoprotein ligand-1
PT	Prothombin time
PTCA	Percutaneous coronary angioplasty
PTFE	Polytetrafluoroethylene
PTS	Post-thrombotic syndrome
PUFA	Polyunsaturated fatty acid
PVI	Primary valvular incompetence
rAAA	Ruptured AAA
Rac	Ras activated cell adhesion molecule
RANTES	Regulated upon activation, normal T cell expressed and secreted
RAS	Renin angiotensin system
RCT	Randomised controlled trial

RF	Rheumatoid factor
RFA	Radiofrequency ablation
rhAPC	Recombinant human activated protein C
RNA	Ribonucleic acid
ROS	Reactive oxygen species
RR	Relative risk
RSD	Reflex sympathetic dystrophy
S1P	Sphingosine-1-phosphate
SAPK	Stress-activated protein kinase
SCF	Stem cell factor
SCS	Spinal cord stimulation
ScvO2	Superior vena cava venous oxygen saturation
SDF-1	Stromal-cell-derived factor-1
SERCA	Sarco/endoplasmic reticulum CaATPases
SEP	Serum elastin peptides
SES	Sirolimus-eluting stent
SEPS	Subfascial endoscopic perforator surgery
SFA	Superficial femoral artery
SFJ	Sapheno-femoral junction
SIRS	Systemic inflammatory response syndrome
SKCa	Small conductance calcium-activated potassium channels
SLE	Systemic lupus erythematosus
SMA	Smooth muscle alpha actin
SMC	Smooth muscle cell
SMP	Sympathetically maintained pain
SNARE	Soluble N-ethylmaleimide-sensitive factor activating protein receptors
SNP	Single nucleotide polymorphisms
SNRI	Serotonin/Noradrenaline reuptake inhibitors
SPJ	Sapheno-popliteal junction
SPP	Skin perfusion pressure
SR	Sarcoplasmic reticulum
SSRIs	Selective serotonin re-uptake inhibitors
SSV	Small saphenous vein

SVT	Superficial thrombophlebitis
STIM1	Stromal interacting molecule 1
ΤαCΕ	$TNF\alpha$ converting enzyme
TAAD	Thoracic aortic aneurysm disease
TAD	Thoracic aortic dissection
TAFI	Thrombin-activatable fibrinolysis inhibitor
Tc-99 MDP	Technetium-99 methylene diphosphonate
TCA	Tricyclic antidepressant
ТСС	Total contact cast
TCR	T-cell receptor
TENS	Transcutaneous electrical nerve stimulation
TF	Tissue factor
TFPI	Tissue factor pathway inhibitor
TGF	Transforming growth factor
TGF-α	Transforming growth factor-alpha
TGF-β	Transforming growth factor-beta
TGL	Triglycerides
Th	T helper
TIA	Transient ischemic attack
TIMP	Tissue inhibitors of metalloproteinase
TLR	Toll-like receptors
TNF	Tumour necrosis factor
TNF-α	Tumour necrosis factor-alpha
tPA	Tissue-type plasminogen activator
TRP	Transient receptor potential
TRPC	Transmembrane receptor potential canonical
TRPV1	Transmembrane receptor potential Vanilloid-type
TXA2	Thromboxane A2
uPA	Urokinase
UT	University of Texas
VCAM	Vascular cell adhesion molecule
VCAM-1	Vascular cell adhesion molecule-1
VEGF	Vascular endothelial growth factor

xxxiv Mechanisms of Vascular Disease

VEGF-R	Vascular endothelial growth factor receptor
VIP	Vasoactive intestinal peptide
VLA-1	Very late activating antigen-1
VOCC	Voltage operated calcium channels
VPT	Vibratory perception threshold
VSMC	Vascular smooth muscle cells
VTE	Venous thromboembolism
VV	Varicose veins
vWF	von Willebrand factor
XO	Xanthine oxidase

3 • Atherosclerosis

GILLIAN COCKERILL¹, QINGBO XU²

¹Department of Clinical Sciences, St George's Hospital Medical School, London, UK.

² Department of Cardiology, King's College, University of London, UK

INTRODUCTION

Atherosclerosis, the principal cause of heart attack, stroke, and peripheral vascular disease, remains a major contributor to morbidity and mortality in the Western World. Disease progression is slow, beginning in childhood and usually becoming clinically manifest in middle age or later. Although the aetiology of atherosclerosis is not fully understood, it is generally accepted that atherosclerosis is a multifactorial disease induced by the effects of various risk factors on appropriate genetic backgrounds¹. Many risk factors, such as hypercholesterolemia, modified lipoproteins, hypertension, diabetes, infections and smoking have been identified in the development of atherosclerosis.

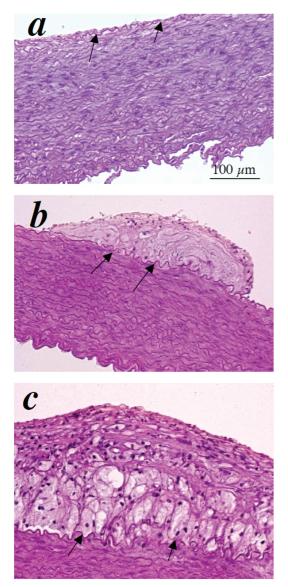
Atherosclerosis has been the focus of intense research for over 100 years. Since Anitschkow and Chalatow first reported that cholesterol can cause atherosclerosis, many investigators have intensively studied the role of blood cholesterol in the pathogenesis of atherosclerosis. Although formerly considered a bland lipid storage disease, new insights into the pathogenesis of atherosclerosis have emerged during the last decades, due to the progress of cellular and molecular approaches to the study of cell interactions in the arterial wall as well as alterations of lipid metabolism. These new insights were broadly summarized in three main theories, i.e. the 'response to injury',² 'oxidized low-density lipoprotein (LDL)', and 'inflammation'¹ hypotheses.

The response to injury hypothesis² relies on the concept that the primary cause of atherosclerosis is an injury to the arterial endothelium induced by various factors, i.e. smoking, mechanical stress, oxidized-LDL, homocysteine, immunological events, toxins, viruses, etc. The oxidized-LDL hypothesis postulates that LDL oxidized by various factors including endothelial cells, macrophages and smooth muscle cells of the arterial wall, plays a key role in the development of atherosclerosis. More recently, a widely accepted hypothesis is that atherosclerosis is an inflammatory disease, because recent advances in the basic science have established a fundamental role for inflammation in mediating all stages of this disease from initiation through progression and, ultimately, the thrombotic complications of atherosclerosis.1 The aim of the present chapter is to summarize the data from a variety of research areas providing an overview of atherosclerosis focusing on mechanistic studies.

ATHEROSCLEROTIC LESIONS

The intima of large and medium sized arteries is composed of a monolayer of endothelial cells and matrix proteins and occasional smooth muscle cells in the subendothelial space (Figure 3.1a). The media of the vessel contains smooth muscle cells and the elastic lamina built by matrix proteins, while the main component of adventitia is connective tissue. With increasing age, the diseased arterial wall slowly thickens and develops focal lesions of lipid accumulation in the intima. These early lesions are known as fatty streaks and are thought to be the sites of predisposition to advanced lesions called atherosclerotic plaques or atheroma, which may lead to clinical symptoms in certain circumstances.

Fatty streaks


Fatty streaks are generally the lesion types found in children, although they may also occur in adults. These lesions represent the early changes of atherosclerosis and are recognized as an increase in the number of intimal macrophages filled with lipid droplets (foam cells). A larger lesion which can be grossly visible is characterized by layers of macrophage foam cells and lipid droplets within intimal smooth muscle cells and minimal coarse-grained particles and heterogeneous droplets of extracellular lipid (Figure 3.1b). With the progression of lesion development, intermediate lesions as described by pathologists, are the morphological and chemical bridge between fatty streaks and advanced lesions. These lesions appear in some adaptive intimal thickenings (progression-prone locations) in young adults and are characterized by pools of extracellular lipid in addition to other components of fatty streak lesions. The fatty streak is largely clinically benign, but

is the precursor to later, clinically relevant lesions.

Plaque or atheroma

The advanced lesion, a dense accumulation of extracellular lipid, known as the lipid core, occupies an extensive but well-defined region of the intima.³ No increase in fibrous tissue and complications such as defects of the lesion surface and thrombosis are present at this stage of disease. This atherosclerotic plaque is also known as atheroma (Figure 3.1c). The characteristic core appears to develop from an expansion and confluence of the small isolated pools of extracellular lipid that characterize atheroma. Between the lipid core and the endothelial surface, the intima contains macrophages, smooth muscle cells, lymphocytes and mast cells. Capillaries surround the lipid core, particularly at the lateral margins and facing the lumen. Frequently macrophages, macrophage foam cells, and lymphocytes are more densely concentrated in the lesion periphery. Much of the tissue between the core and the surface endothelium corresponds to the proteoglycan-rich layer of the intima, although infiltrated with the cells just described. Advanced lesions may or may not narrow the arterial lumen, nor be visible by angiography, nor produce clinical manifestations. Such lesions may be clinically significant even though the arterial lumen is not narrowed, because complications may develop suddenly.3

In addition, two types of atherosclerotic plaques, i.e. 'vulnerable' and 'stable' plaques, have been recognized.⁴ Vulnerable plaques often have a wellpreserved lumen, since plaques remodel outward initially. The vulnerable plaque typically has a substantial lipid core and a thin fibrous cap separating the thrombogenic macrophages bearing tissue factor (TF) from the blood. At sites of lesion

FIGURE 3.1: Sections of rabbit arterial wall. Rabbits were fed with a standard chow-diet (*a*) or cholesterolenriched diet (0.2%) for 3 weeks (*b*) or 16 weeks (*c*). Their aortas were harvested and sections prepared and stained with hematoxilin and eosin. Arrows indicate the internal elastic lamina, the border between the intima and media of the arterial wall.

disruption, smooth muscle cells are often activated, as detected by their expression of the transplantation antigen HLA-DR. In contrast, the stable plaque has a relatively thick fibrous cap protecting the lipid core from contact with the blood. Clinical data suggest that stable plaques more often show luminal narrowing detectable by angiography than do vulnerable plaques, but with much less chance of rupture.

HYPERCHOLESTEROLEMIA AND OXIDISED-LDL

Accumulating evidence suggests a causal relationship between blood cholesterol and atherosclerosis. Blood cholesterol is carried by lipoproteins, including LDL, very low-density lipoprotein and high-density lipoprotein (HDL). LDL is believed to be 'bad' lipoprotein, while HDL is 'good' and plays a protective role in atherogenesis.⁵ It is established that familial hypercholesterolemia related to increased LDL levels causes premature atherosclerosis and heart disease,6 whereas non-genetic hypercholesterolemia is also associated with the development of atherosclerosis. The consensus of many trials using different cholesterol-lowering regimens indicate that for every 10% reduction in cholesterol level, the deaths of patients with coronary heart disease is reduced by at least 15%. It has been assumed that the reduction in adverse clinical events when plasma cholesterol levels are decreased is directly related to the magnitude of the cholesterol lowering.

That assumption is supported by the fact that the benefit relates to the change in cholesterol level in much the same way whether the cholesterol lowering is achieved with diet or with drugs. These findings suggest that blood cholesterol exerts its role in the pathogenesis of atherosclerosis.

LDL can be modified by oxidation *in vivo* and *in vitro* and is detectable in the circulation as well as in atherosclerotic lesions. *In vivo*, the rate of production of oxidized-LDL in the arterial intima is a function of the concentration of native LDL present. The mechanism whereby hypercholesterolemia and oxidized-LDL trigger events leading to the generation of early atherosclerotic lesions i.e. fatty streak (Figure 3.2) remains uncertain. Although rabbits and pigs were often used in studying this issue, the apolipoprotein (apo) E-deficient mouse⁷ and the LDL receptor-deficient mouse have become preferred animal models. Deletion and overexpression of genes in animal models is now the gold standard for critically testing the relevance of candidate genes in atherogenesis. By using these models, it was observed that one of the earliest responses induced by hypercholesterolemia and oxidized-LDL is an increase in the expression of vascular cell-adhesion molecule-1 (VCAM-1), a key adhesion molecule for monocytes and T cells, on the endothelial surface lining the major arteries.8 Oxidized-LDL is itself directly chemotactic for monocytes and

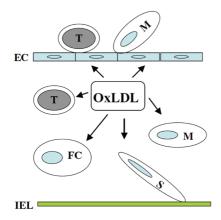


FIGURE 3.2: Schematic representation of the role of oxidized-LDL (oxLDL) in atherogenesis. Oxidized-LDL generated either locally or systemically stimulates endothelial cells (EC) expressing adhesion molecules, including ICAM-1, VCAM-1 and E-selectin, which are responsible for adhesion of blood mononuclear cells. Oxidized-LDL is a chemokine for T lymphocytes (T), monocytes (M) and smooth muscle cells (S), and promotes foam cell (FC) formation, which form the early lesion fatty streak.

T cells, and can also be cytotoxic for endothelial cells, mitogenic for macrophages and smooth muscle cells and stimulate the release of monocyte chemoattractant protein-1 (MCP-1) and monocyte colony-stimulating factor (M-CSF) from endothelial cells. The oxidative modification hypothesis has been extensively reviewed.^{9.}

Oxidized-LDL can account for the loading of macrophages with cholesterol. Here, monocytes undergo phenotypic modification and take up oxidized-LDL to become foam cells, loaded with multiple cytoplasmic droplets containing cholesterol esters.¹⁰ Recently there has been considerable progress in identifying the components of oxidized-LDL that make it a ligand for scavenger receptors. Extensive degradation of the polyunsaturated fatty acid (PUFA) in the sn-2 position of phospholipids by oxidation seems to be essential. Moreover, oxidized-LDL and apoptotic cells compete for binding to macrophage scavenger receptor, indicating that oxidized phospholipids in the membranes of apoptotic cells are involved in their binding to macrophage scavenger receptors. Therefore, oxidized-LDL promotes foam cell formation that forms the earliest lesions in the intima, which may progress to advanced lesions in the presence of other pro-atherogenic factors (Figure 3.2).

High-density lipoproteins role in atheroprotection

It has been known for many years that the plasma concentration of HDL-C correlates inversely with the incidence of cardiovascular disease. The Framingham Heart Study showed that people whose HDL-C was less than 35 mg/dL (0.91 mmol/L) at the beginning of the study had a future coronary risk more than eight times that in subjects whose HDL-C concentration was greater that 65 mg/dL (1.68 mmol/L).¹¹ In the more

29

recent Prospective Cardiovascular Munster (PROCAM) Study, men with an HDL-C concentration of less than 35 mg/dL (0.91 mmol/L) at baseline were shown to have a four times greater risk, at six years, than men whose HDL-C concentration was greater than 35 mg/dL (0.91 mmol/L).¹² In both studies, the risk associated with lower plasma HDL-C concentration was independent of LDL-C concentration. HDLs have several properties that contribute to their ability to protect against the development of atherosclerosis.

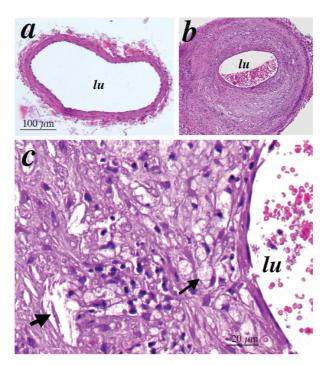
The best known mechanism of atheroprotection relates to the ability of HDLs to promote efflux of cholesterol from foam cells. This process inhibits the progression of, and potentially promotes the regression of, atherosclerosis.¹³ High-density lipoproteins can also inhibit the oxidative modification of LDLs and thus reduce their atherogenicity. The principle mechanism of this anti-oxidant function resides with the presence of para-oxonase enzyme residing in the HDL particle,^{14,15} although the main apolipoprotein, apolipoprotein AI (ApoAI), has also been demonstrated to have anti-oxidant capacity.¹⁶ Conceivably, the earliest observable cellular dysfunction in the normal blood vessel, leading to atherogenesis, is the expression of leukocyte adhesion molecules and chemokines. Many studies, both in vivo and in vitro have shown that HDLs can inhibit expression of endothelial cell adhesion molecules and MCP-1.17-20 Endothelial dysfunction, and subsequent platelet activation and aggregation are key elements of the progression of atherosclerotic plaque formation. The ability of HDLs to be antithrombotic was demonstrated by the ability to induce prostacyclin (PGI₂) synthesis, via induction of cyclo-oxygenase 2,21 and in addition to stimulate the generation of nitric oxide,²² thus reducing the endothelial

dysfunction that may precede the development of atherosclerosis.

HYPERTENSION AND BIOMECHANICAL STRESS

Hypertension is a well-established risk factor for atherosclerosis.23 Clinical trials have shown that, in the highest quintile for diastolic pressure, hypertension still contributes significantly to the risk of atherosclerosis, even with the added risks of high cholesterol and smoking. Induction of hypertension in the Watanabe heritable hyperlipidemic rabbit showed a synergistic effect, causing intensification of atherosclerosis. The fact that atherosclerotic lesions preferentially occur in the areas where hemodynamic or biomechanical stress is altered, e.g. bifurcation of the arteries, supports the idea that hypertension exerts its role in the pathogenesis of atherosclerosis via altered mechanical stress to the vessel wall.

In vivo, the vessel wall is exposed to two main hemodynamic forces or biomechanical stress: shear stress, the dragging frictional force created by blood flow, and mechanical stretch, a cyclic strain stress created by blood pressure.24 Shear stress stimulates endothelial cells to release nitric oxide and prostacyclin,²⁵ resulting in vessel relaxation and protection of vascular cells, whereas smooth muscle cells are stimulated by cyclic strain stress. In humans, atherosclerotic lesions occur preferentially at bifurcations and curvatures where hemodynamic force is disturbed, i.e. lower shear stress and higher mechanical stretch. Although veins do not develop spontaneous atherosclerosis-like lesions, accelerated atherosclerosis occurs rapidly in venous bypass grafts, which bear increased biomechanical forces due to alterations in blood pressure, i.e. vein (0-30 mm Hg) vs. artery (120 mm Hg). This finding supports the


hypothesis that mechanical stress could be a crucial factor in the pathogenesis of atherosclerosis.

The mechanism whereby mechanical forces are sensed by cells and transmitted through intracellular signal transduction pathways to the nucleus resulting in quantitative and qualitative changes in gene expression in the vessel wall is not fully understood. However, recent evidence indicates that mechanical stretch initiates intracellular signal pathways, especially mitogen-activated protein kinase (MAPK) cascades²⁶ which are thought to play a pivotal role in transmitting transmembrane signals required for cell proliferation, differentiation and apoptosis. MAPKs comprise a ubiquitous family of tyrosine/threonine kinases, and include extracellular signalregulated kinases (ERKs), stress-activated protein kinases (SAPKs) or c-Jun NH2-terminal kinases (JNKs), and p38 MAPKs.²⁷ They are highly activated or expressed in atherosclerotic lesions and vessel wall stimulated by acute hypertension.²⁸

Biomechanical stress-induced cell death

While biomechanical force at physiological levels is essential to develop and maintain organic structure and function, at elevated levels mechanical stretch may result in cell death leading to pathological conditions. In recent years, however, it has become widely recognized that cell death, namely apoptosis, is not just a response to injury but a highly regulated and controlled process. Disturbances in the regulatory mechanisms of apoptosis often precede the development of atherosclerosis. Exploration of the molecular signalling mechanisms leading to mechanical stress-induced apoptosis in cardiovascular disorders has revealed the crucial role of apoptosis in the pathogenesis of atherosclerosis.²⁹ Recent data focussing on the molecular mechanisms of mechanical stress-induced apoptosis are summarised and the role of apoptosis in the development of atherosclerosis is highlighted.

Recently, the first mouse model of vein graft atherosclerosis was established by grafting autologous jugular vein or vena cava to carotid arteries in wild-type and apoE-deficient mice. In many respects, the morphological features of this murine vascular graft model resemble those of human graft atherosclerosis (Figure 3.3). Apoptosis occurred mainly in veins grafted to arteries, remaining unchanged in vein-to-vein grafts.³⁰Theveinsgrafted to arteries were subjected to increased biomechanical forces in the form of stretch stress due to blood pressure. When mouse, rat and human arterial smooth muscle cells cultured on a flexible membrane were subjected to cyclic strain stress, apoptosis was observed in a time- and strength-dependent manner. Mechanical stretch resulted in p38 MAPK activation. Smooth muscle cell lines stably transfected with a dominant negative rac, an upstream signal transducer, or overexpressing MAPK phosphatase-1, a negative regulator for MAPKs, completely inhibited mechanical stress-stimulated p38 activation, and abolished mechanical stress-induced apoptosis.³¹ Interestingly, p53-deficient vein grafts had lower levels of apoptosis that correlated with increased atherosclerotic lesions.³² The sudden elevation in mechanical forces could be a strong stimulus to the grafted vessel wall and may result in activation of intracellular signal pathways leading to gene expression and cell death. Thus, one of the earliest events in vein graft atherosclerosis is apoptosis, in which mechanical stress-induced p38-MAPK-p53 activation is, at least in part, responsible for transducing signals leading to apoptosis.

FIGURE 3.3: Hematoxilin and eosin-stained sections of arterialized mouse vein grafts. Under anesthesia, vena cava veins were removed and isografted into carotid arteries (of control mice)(a) of apoE-/- mice (b). Animals were sacrificed 8 weeks after surgery, and the grafted tissue fragments fixed in 4% phosphate-buffered (pH 7.2) formaldehyde, embedded in paraffin, sectioned, and stained with hematoxylin-eosin. Panel c is a photograph of vein graft section with higher magnification. Smaller arrow indicates a foam cell, and larger one indicates cholesterol crystal structure. *Iu* indicates the lumen of the vessel.

Biomechanical stress and inflammation

Vein graft atherosclerosis has an inflammatory nature characterized by mononuclear cell infiltration followed by smooth muscle cell proliferation. It has been postulated that biomechanical stress plays a role in adhesion molecule expression via MAPK signal transduction pathways, leading to NF-KB activation. Supporting this concept is the fact that neointimal lesions of vein grafts in intercellular adhesion molecule (ICAM)-1 -/mice were reduced from 50% to 30% compared to wildtype controls. ICAM-1 is critical in the development of venous graft atherosclerosis. It has been established that exposure of endothelial cells to shear (mechanical) stress results in increased expression of ICAM-1 and

monocyte chemotactic protein-1 (MCP-1) via activation of transcription factor NF-KB and AP-1. These molecules are essential for leukocyte-endothelial cell interaction and subsequently cell infiltration, characteristic of the early lesions of vein grafts that undergo elevated blood pressure. Interestingly, mechanical stress also leads to smooth muscle cells expressing ICAM-1 via activation of NF-KB. In animal models, smooth muscle cells express ICAM-1 which is associated with monocyte/macrophage accumulation in vein grafts. Smooth muscle cells of ICAM-1 -/- mice do not express ICAM-1 which is correlated with reduced early lesions.³³ Mechanical stress-induced adhesion molecules and chemokine expression in the vessel wall could be important for the inflammatory response.

Biomechanical stress-induced smooth muscle cell proliferation

It has been established that mechanical stress stimulates DNA synthesis and the proliferation of in vitro cultured smooth muscle cells. Hypertension increases mechanical force on the arterial wall up to 30%, resulting in marked alterations in signal transduction and gene expression in smooth muscle cells, which contribute to matrix protein synthesis, proliferation and differentiation.²³ cell Recently, several reports demonstrated that angioplasty resulted in stretching of the arterial wall leading to rapid activation of the MAPKs in the regenerating carotids.³⁴ The magnitude of Extracellular signal-regulated kinase p42 (ERK42) activation positively correlated with the degree of balloon injury to the arterial wall. Ex vivo stretching of the vessel wall also induced significant activation of ERK42 kinases. These findings suggested that the kinase activation in the early phase following injury may be due to mechanical stimulation of the vessel wall.

In cultured smooth muscle cells, mechanical forces evoked ERK activation followed by enhanced DNA-binding activity of transcription factor AP-1. Interestingly, physical forces rapidly result in phosphorylation of platelet-derived growth factor (PDGF) receptor,35 epithelial growth factor receptor and vascular endothelial growth factor receptor. Thus, mechanical stresses may directly perturb the cell surface or alter receptor conformation, thereby initiating signalling pathways normally used by growth factors. Suramin, a non-specific PDGF inhibitor, has been shown to be a growth factor receptor antagonist that inhibits cell proliferation. When vein isografts in mice were treated ex vivo and in vivo with suramin, intimal lesions were reduced up to 70% compared to untreated controls. The mechanism of suramin-inhibited neointimal hyperplasia mainly involves inhibition of smooth muscle cell migration and proliferation via blocking PDGF receptor-MAPK-AP-1 signal pathways. Thus, research into biomechanical stress-regulated gene expression in atherosclerosis using these models could lead to a new therapeutic strategy in the treatment of this disease in humans.

INFECTIONS AND HEAT SHOCK PROTEINS

Risk factors, such as high blood cholesterol, hypertension and smoking only explain a proportion of the incident cases of all atherosclerosis. There is a body of evidence that microorganisms play a role in the pathogenesis of atherosclerosis and may be a primary risk factor in people who do not suffer from other established risk factors. Accumulating evidence suggests that infectious organisms reside in the wall of atherosclerotic vessels, including cytomegalovirus (CMV) and Chlamydia (C) Seroepidemiological studies pneumoniae. demonstrate an association between the pathogen-specific IgG antibodies and atherosclerosis.^{26,27} However, the data are inconsistent, with other studies showing no increased risk for atherosclerosis.38,39 One possible explanation for this disparity is that infections contributing to atherosclerosis risk may depend, at least in part, on the host's response to the pathogen, i.e. inflammatory and immune reactions.

Infections

Several papers reviewing the infections, ie *C.pneumoniae*, *H.pylori* and CMV and atherosclerosis have been published³⁷ and these will be summarised. Saikku et al⁴⁰ was first to show a link between *C.pneumoniae* infection, coronary artery disease and atherosclerosis. Since then, many studies have shown an association of *C.pneumoniae* with atherosclerosis. In vitro experiments have shown a preferential and specific attraction to and infection of macrophages, vascular endothelium and vascular smooth muscle, by *C.Pneumoniae*, thus resulting in their accumulation into atherosclerotic plaques. This is supported by studies of post-mortem specimens of vascular tissue which found a high correlation between the distribution of atherosclerosis and *C.pneumoniae*⁴¹ and other organisms.

H.pylori, another gram negative bacteria which typically infects human gastric epithelial cells has been demonstrated in atherosclerotic plaques.³⁸ Sero-positivity to H.pylori was implicated as a risk factor in coronary heart disease (CHD) from the first report in 1994. However a meta-analysis³⁹ of 18 studies failed to show any correlation between sero-positivity against H.pylori and the presence or extent of CHD. Although the evidence supporting involvement of *H.pylori* in atherogenesis is not conclusive, it may be important to differentiate between virulent and avirulent strains of *H.pylori* to determine the effects on atherogenesis. Mayr et al⁴² conducted a population based study and investigated the effects of CagA (cytotoxin-associated gene A) positive and CagA negative strains of H.pylori. This study concluded that there was an increased risk of atherosclerosis in individuals who were infected with CagA positive strains of *H.pylori*. Another group has obtained similar results, indicating the role of this strain in the pathogenesis of atherosclerosis.

Heat shock proteins

The role of HSPs in disease with regard to their physiological functions and pathological involvement have been described in many reviews on the subject. The HSP family of proteins is subdivided into groups based on their molecular weight (e.g. HSP60 is a 60kDa protein) and are produced by almost all cells and play an important role in the organism's general protective response to environmental and metabolic stresses (Table 3.1). They exist in all major cellular compartments. For example, HSP10, HSP60 and HSP75 are mainly located in mitochondria, while others are found in different compartments throughout the cell. They have important physiological functions, primarily as a molecular chaperone.⁷ HSPs also appear to be important in preventing cellular damage during repair processes following injury. Evidence indicates that HSPs may be autoantigens in some circumstances.43 HSP47, HSP60 and HSP70 have been identified as being involved in the pathogenesis of atherosclerosis.44

Infections and HSP expression

In a recent study, increased HSP60 was demonstrated on the endothelium, smooth muscle cells, and mononuclear cells of all atherosclerotic carotid and aortic specimens, whereas vessels with normal intima showed no detectable expression of this HSP. The level of HSP60 expression positively correlated with atherosclerotic severity.45 Interestingly, chlamydial and human HSP60s have been shown to be co-expressed in atherosclerotic lesions. These data support the concept that elevated HSP expression in lesions may be induced by the pathogen *Chlamydiae species*. During its normal cycle generating infectious progeny, Chlamydiae express basal levels of HSP. During the lytic phases of chlamydial infection, host cells release their own HSP60, and also chlamydial HSP60 that has been produced by these microorganisms. Soluble HSP60 (sHSP) levels were significantly elevated in subjects with prevalent/incident carotid atherosclerosis and correlated to intima-media thickness independent of

Family	Members/other names	Physiological function	Pathological involvement
HSP10	HSP10, HSP17	Promotes substrate Release with HSP60	unknown
Small HSP	HSP20, HSP23 HSP27, HSP28	F-actin assembly, Molecular chaperones.	unknown
HSP40	HSP32, HSP40, HSP47	Guides protein folding, Binding and transport of collagen	Atherosclerosis
HSP60	HSP58, GroEL HSP60, HSP65 Grp58	Assemble polypeptides; Translocate proteins across membranes; Accelerate protein folding and unfolding	Atherosclerosis, Rheumatoid arthritis, Adjuvant arthritis, Diabetes mellitus, Systemic sclerosis.
HSP70	HSP68, Dnak. Hsc70, Hsx70 HSP72, HSP73 HSP75, Grp75 HSP78, Grp78	Molecular chaperone: Assembly and transport newly synthesized proteins; Fold or unfold polypeptides; Remove denatured proteins; Bind to specific polypeptides (e.g., p53); ATPase activity.	Atherosclerosis Tuberculosis, Leprosy, Filariasis,
HSP90	HSP83, HptG HSP87, HSP90-α grp94, HSP90-β	Bind to specific polypeptide receptors (e.g., glucocorticoid receptor).	Schistosomiasis, Systemic lupus erythematosus.

TABLE 3.1: Heat shock protein families

age, sex and other risk factors. Interestingly, sHSP60 was also correlated with anti-LPS, anti-*Chlamydia* and anti-HSP60 antibodies, inflammation markers and chronic infections.

Infections, sHSP and innate immunity

Infectious agents contribute to atherogenesis in a variety of ways. One mechanism is by triggering innate immune reactions leading to inflammatory responses. Innate immunity involves several different cell types, e.g. mononuclear phagocytes and endothelial cells. Both endothelial cells and macrophages express receptors that recognize molecular epitopes from a broad range of pathogens. These receptors include various scavenger and Toll-like receptors (TLRs). So far more than 10 human TLRs have been identified. A variety of bacterial and fungal components are known TLR ligands, including peptidoglycan for TLR2, LPS for TLR4, flagellin for TLR5, and unmethylated CpG (cytosine and guanine separated by a phosphate group, which links the two nucleotides together) motifs in bacterial DNA for TLR9. It is possible that TLRs may be collectively responsible for detecting a large range of microbial pathogens. TLRs are evolutionarily conserved innate immune receptors that are shared by IL-1 receptor signalling to activate the NF-KB pathway and release inflammatory cytokines. TLR ligation therefore induces expression of a wide variety of genes such as those encoding proteins involved in leukocyte recruitment, production of reactive oxygen species, and phagocytosis. Activation of TLRs will also elicit the production of cytokines that augment local inflammation. Finally, TLR ligation may directly induce apoptosis, probably of key importance in the first line of defence.46

Expression of TLR4 in atherosclerotic plaques has been found, preferentially in lipid-rich and macrophage-infiltrated areas of lesions. In vitro, basal expression of macrophage TLR4 was shown to be up-regulated by oxidized-LDL. In addition, of the nine TLRs, expression of TLR1, TLR2, and TLR4 was shown to be markedly enhanced in human atherosclerotic plaques. A polymorphism or mutation of TLR4 was shown to be strongly correlated with the incidence and development of atherosclerosis in a large population study (Bruneck Study). Surprisingly, several groups reported that recombinant HSP60 and HSP70 from bacteria and humans specifically bind to TLR4 in macrophages, endothelial cells and smooth muscle cells. Recombinant HSP60 binding to the TLR4/CD14 complex of macrophages and endothelial cells led to activation of MyD88-NF-kB pathways. HSP70 and mycobacterial HSP65 have a similar binding activity to TLR4/CD14 that initiates MyD88-NF-KB signal pathways, suggesting that the TLR4/CD14 is a receptor for several HSPs that mediate the signal pathways leading to proinflammatory responses during infections.

In summary, infections with proatherogenic organisms may be important in individuals lacking additional risk factors as well as acting synergistically with established risk factors. In this process, HSP may be a link between infections and the pathogenesis of atherosclerosis. Infectious agents may exert their role by producing their own HSPs and inducing host production which could be released into blood. The soluble form of HSPs contact endothelial cells and immune cells where innate immune responses are initiated. Innate immune reactions to HSPs result in proinflammatory responses in the vessel wall. Together, infections via HSPs contribute to the development of atherosclerosis (Figure 3.4).

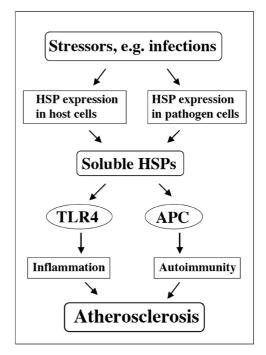


FIGURE 3.4: Schematic representation of the likely mechanism of action of heat shock proteins (HSPs) in the development of atherosclerosis in response to risk factors (stressor), e.g. infections. TLR, Toll-like receptor; APC, antigen-presenting cells.

IMMUNE RESPONSES

The contribution of immune responses to the pathogenesis of atherosclerosis has been recognized and much progress in this research field has been achieved through the participation of many investigators.⁴⁷ Involvement of the immune system in atherogenesis is supported by recent data, including the occurrence of granular deposits of immunoglobulins and co-distributed complement components, increased expression of C3b receptors (CR1) and C3b1 receptors (CR3) on macrophages within atherosclerotic lesions, but not in unaltered vessels. However, B cells are only found in very low numbers in various stages of atherosclerotic lesions, and the site of production for these immunoglobulins must, therefore, be sought elsewhere. Other than these humoral immune phenomena, it is now clear that T cells are among the first cells infiltrating the intima of arteries during the earliest stages of atherosclerosis, most probably before monocytes. A majority of these early T cells are CD4⁺, HLA-DR⁺ and interleukin-2 receptor+ (IL-2R⁺), i.e. activated. Others have shown that T cells in late atherosclerotic plaques express the low molecular variant of the leukocyte common antigen (CD45RO) and the integrin very late activation antigen-1 (VLA-1). Hansson and his group analyzing the rearrangement of T cell receptor (TCR) genes in these latter cells derived from advanced lesions, showed that they represent a polyclonal population rather than displaying restricted T-cell receptor TCR usage. These findings support the role of the immune system in atherogenesis.

MHC class II antigen and T cells

Regardless of which antigen these lymphocytes may recognize, it seems improbable that endothelial cells (EC) which aberrantly express major histocompatibility complex (MHC) class II antigens act as primary antigenpresenting cells for T cell sensitization. MHC class II expression by EC occur concomitantly where T cells are found, and thus production of gamma-interferon (IFN γ), the major T-cell chemokine, is present in the intima directly beneath these areas. Therefore, it can be concluded that the expression of MHC class II molecules by endothelial cells represents a secondary rather than a primary phenomenon. The large majority of CD3⁺ cells in the mononuclear infiltrate in atherosclerotic lesions expresses TCR α/β , but an unexpectedly high proportion also express TCR γ/δ . While the latter type of cell only constitutes approximately 1 % of leukocytes in peripheral blood, enrichment to 10 % or more within early atherosclerotic lesions has been observed. The majority of these latter cells express the TCRy2 chain, i.e. resemble the TCR γ/δ + population found in the intestinal mucosa. On the other hand, TCR V γ 9 δ 2+ cells characteristic of circulating TCR γ/δ + cells are not proportionally increased in the intima. Finally, endothelial cells and leukocytes express and synthesise a variety of immunological-inflammatory mediators, occurring in atherosclerotic lesions. Among others, these include interleukin-1 (IL-1), tumour necrosis factor α (TNF α), lymphotoxin, IL-2, IL-6, IL-8, monocytechemotactic peptide-1 and IFN γ^1 . Together, these molecules can modulate the local cellular immune response within emerging atherosclerotic lesions.

Oxidized-LDL as a candidate antigen

T cells isolated from human atherosclerotic plaques were shown to be specifically reactive to oxidized-LDL. One fourth of all CD4+ T cells cloned from human plaques recognized oxidized-LDL in an HLA-DR-dependent manner. Oxidized-LDL-specific T cells are present in lymph nodes of apoE-KO mice, which have strong humoral as well as cellular immune responses to such modified lipoproteins. In humans, oxidized-LDL induces activation of a subset of peripheral T cells. In addition, antibodies to oxidized-LDL can be detected in atherosclerotic patients and are present in atherosclerotic lesions, suggesting that it is a quantitatively important antigen. The immune response to oxLDL plays a pathogenetic role in atherosclerosis because lesion progression can be inhibited by immunization or induction of neonatal tolerance to oxLDL. It seems paradoxical that both tolerization and hyperimmunization can reduce the extent of disease; this may be due to the different effector pathways activated by these two kinds of treatment.

HSP60 as a candidate antigen

As discussed above, HSPs have been implicated in activation of innate immune responses involved in the pathogenesis of atherosclerosis. Moreover, adaptive immune reactions to HSP60 have also been implicated in the development of atherosclerosis. In experimental models, rabbits immunised with HSP65/60 recorded induction of vascular inflammation, with endothelial activation and mononuclear cell adhesion demonstrated.48 The developing lesions also contained T cells, and cell lines derived from such infiltrates exhibited anti-HSP60 reactivity. Anti-HSP60 antibodies occurred in peripheral blood, and immunization with HSP60 was found to increase fatty streak development in hypercholesterolemic rabbits and mice. In humans, antibodies to HSP65/60 are elevated in early and late atherosclerosis and may predict progression of atherosclerotic disease. Since heat shock proteins of humans and microbes are structurally and antigenically similar, it is

possible that molecular mimicry between immune responses to microbial HSP and homologues expressed by vascular cells could account for the association between infections and atherosclerosis.⁴⁹ Based on these findings, Maron and co-workers provided the evidence that atherosclerotic lesions were reduced by nasal immunization with HSP65 in apoEdeficient mice, suggesting that atherosclerosis might be inhibited by vaccination against HSP65.⁵⁰

$\beta 2\text{-glycoprotein}$ Ib as a candidate antigen

A third autoantigen, β 2-glycoprotein Ib (β 2-GPI), is present on platelets but may also be expressed by endothelial cells. Autoantibodies to β 2-GPI are produced in several inflammatory disorders, in addition to atherosclerosis. The immune response to β 2-GPI appears to be proatherogenic, because hyperimmunization with β 2-GPI¹¹⁶ or transfer of β 2-GPI-reactive T cells aggravates fatty streak formation in LDLR-/- mice. The pathogenic mechanism by which β 2-GPI acts remains unclear, but it may be related to this protein's capacity to bind phospholipids.

In summary, adaptive immunity powerfully modulates initiation and progression of atherosclerosis. Atherogenesis involves intercommunication between shared pathways involved in adaptive and innate immunity. Various established and emerging risk factors for atherosclerosis modulate aspects of immune responses, including lipoproteins and their modified products, HSPs, and infectious agents. As the molecular details become understood, new potential targets for therapies will doubtless emerge.

INFLAMMATION

It is generally accepted that atherosclerosis is an inflammatory disease,¹ because recent

findings have provided important links between all risk factors and the mechanisms of atherogenesis. Clinical studies have shown that this emerging biology of inflammation in atherosclerosis applies directly to human patients. Elevation of markers for inflammation predicts the outcome in patients with acute coronary syndromes.⁴ In addition, lowgrade chronic inflammation, as indicated by levels of the inflammatory marker C-reactive protein (CRP), prospectively defines the risk of atherosclerotic complications, thus adding to prognostic information provided by traditional risk factors. Certain treatments that reduce atherosclerosis risk also limit inflammation. For example, statins, used for lipid lowering,⁴ have anti-inflammatory effects. Amongst the known inflammatory triggers on the vessel wall are known risk factors e.g. hypercholesterolemia, oxidized-LDL, hypertension, biomechanical stress and infection. These risk factors can directly or indirectly stimulate endothelial cells expressing adhesion molecules (VCAM-1, ICAM-1 and E-selectin) mediating subsequent mononuclear cell infiltration and foam cell formation in the subendothelial space.¹ In this section, some recent findings that have not been described above will be summarised.

C-reactive protein

C-reactive protein (CRP) is an acute-phase protein that is involved in inflammatory processes. It is made up of 5 identical subunits which are arranged in a pentagonal shape. CRP is predominantly synthesized by hepatocytes, but in response to inflammation, CRP expression can be found in atherosclerotic plaque, aortic endothelial cells, monocytes and vascular smooth muscle cells. Inflammatory cytokines induce CRP gene expression and statins have been shown to reduce CRP levels.⁵² Biasucci et al⁵³ studied a cohort of patients admitted with unstable angina and found that one half of this group had a persistently elevated CRP (>3mg/dL) at discharge. Those with elevated discharge CRP levels had a significantly elevated risk of recurrent unstable angina or MI during the subsequent 12 months. This group has also demonstrated that CRP elevation in individuals presenting with severe peripheral arterial disease was associated with an increased risk of MI, independent of other vascular risk factors.

CRP may be not only a marker of inflammation and atherosclerosis, it may also be an active component participating in atherogenesis. CRP can bind to lipoproteins and activate the complement system via the classical pathway. CRP deposits have been shown in the arterial wall early during lesion formation, which is co-localized with the terminal complement complex. This suggests that CRP may promote atherosclerotic lesion formation by activating the complement system and is involved in foam cell formation, which may be caused in part by the uptake of CRP-opsonized LDL.

CD40/CD40L

These antigens are ubiquitously expressed on the surface of endothelial cells, smooth muscle cells, macrophages, T lymphocytes, and platelets within human atheroma.⁵¹ The proatherogenic functions of CD40 ligation include augmented expression of matrix metalloproteinases, procoagulant tissue factor (TF), chemokines, and cytokines. Indeed, interruption of CD40 signalling not only reduced the initiation and progression of atherosclerotic lesions in hypercholesterolemic mice *in vivo*, but also modulated plaque architecture in ways that might lower the risk of causing thrombosis. In addition to the 39-kDa cell membrane–associated form, CD40L also exists as a soluble protein, termed sCD40L. Although lacking the cytoplasmic, the transmembrane region, and parts of the extracellular domains, this, the soluble form of CD40L, is considered to possess biological activity. Patients with unstable angina express higher sCD40L plasma levels than healthy individuals or patients with stable angina. Moreover, it was recently demonstrated that elevated plasma concentrations of sCD40L predict risk for future cardiovascular events. Although in vitro and in vivo studies established that CD40 signalling participates in atherosclerosis, the initial trigger for CD40/ CD40L expression within atheroma may be regulated by oxidized-LDL. Thus CD40/ CD40L may be a mediator in the inflammatory responses during the development of atherosclerosis.

SUMMARY AND PERSPECTIVES

Atherosclerosis is an inflammatory disease that is initiated by multiple risk factors, including hypercholesterolemia, oxidized-LDL, altered biomechanical stress, smoking and infections. Due to research achievements in recent decades, atherogenesis is no longer an inevitable consequence of aging-the statin revolution has left this in no doubt. Better control of hypercholesterolemia can clearly be achieved but many questions remain. For example, which factor is an initiator for the development of atherosclerotic lesions, and how do other factors participate in the disease process. Currently, atherosclerosis research is highly topical. The mystery of the molecular mechanisms in this disease will yield to the current multidisciplinary attack by academic institutions and the pharmaceutical industry using the powerful techniques of vascular biology and molecular approaches.

REFERENCES

- Ross R. Atherosclerosis an inflammatory disease. N Engl J Med 1999; 340: 115–126.
- Ross R. The pathogenesis of atherosclerosis – an update. N Engl J Med 1986; 314: 488–500
- 3. Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. *Arterioscler Thromb Vasc Biol* 1995; **15**: 1512–1531
- Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. *Circulation* 2002; 105: 1135–1143
- Glass CK, Witztum JL. Atherosclerosis. the road ahead. *Cell* 2001; **104**: 503–516
- Goldstein JL, Kita T, Brown MS. Defective lipoprotein receptors and atherosclerosis. Lessons from an animal counterpart of familial hypercholesterolemia. N Engl J Med 1983; 309: 288–296
- Zhang SH, Reddick RL, Piedrahita JA, et al. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. *Science* 1992; 258: 468–471
- Li H, Cybulsky MI, Gimbrone MA, Jr., et al. An atherogenic diet rapidly induces VCAM-1, a cytokineregulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. *Arterioscler Thromb* 1993; 13: 197–204.
- Navab M, Berliner JA, Watson AD, et al. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George

Lyman Duff Memorial Lecture. *Arterioscler Thromb Vasc Biol* 1996; **16**: 831–842.

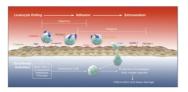
- Witztum JL, Steinberg D. The oxidative modification hypothesis of atherosclerosis: does it hold for humans? *Trends Cardiovasc Med* 2001; 11: 93–102.
- Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. *Am J Med*.1977; 62: 707–714.
- Assman G and Schulte H. Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). Prospective Cardiovascular Munster Study. *Am J Cardiol.* 1992; **70**: 733–737.
- 13. Assman G, Nofer J-R. Atheroprotective effects of high-density lipoproteins. *Ann Rev Med.* 2003; **54**: 321–341.
- Mackness B, Hine D, Lui Y, Mastorikou M, Mackness M. Paraoxonase-1 inhibits oxidised LDL-induced MCP-1 production by endothelial cells. *Biochem Biophys Res Comm* 2004; **318**: 680–683.
- 15. Navab M, Hama SY, Anantharamaiah GM, Hassan K, Hough GP, Watson AD et al., Normal high density lipoprotein inhibits three steps in the formation of mildly oxidised loe density lipoprotein; steps 2 and 3. *J Lipid Res* 2000; **41**: 1495–1508.
- Stocker R, Keaney JF Jr., Role of oxidative modification in atherosclerosis. *Physiol Rev* 2004; 84: 1381–1478.
- 17. Cockerill GW, K-A Rye, JR Gamble, MA Vadas and P Barter. High density

lipoproteins inhibit cytokine-induced expression of adhesion molecules on endothelial cells. *Arterioscler Thromb Vasc Biol* 1995; **15**: 1987–1994.

- Cockerill GW, T Huehns, C Stocker, NE Miller and DO Haskard. Elevation of plasma HDL inhibits cytokineinduced induction of E-selectin in a porcine model of acute inflammation. *Circulation* 2001; **103**: 108–112.
- Cockerill GW, M McDonald, S Cruzzocrea, C Thiemermann. High density lipoproteins reduce organ injury and dysfunction following hemorrhagic shock. *FASEB J* 2001; 15: 1945–1951.
- Nicholls SJ, Dusting GJ, Cutri B, Bao S, Drummond GR, Rye KA, Barter PJ. Reconstituted high-density lipoproteins inhibit the acute prooxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolaemic rabbits. *Circulation* 2005; **111**; 1543–1550.
- Cockerill GW, J Saklatvala, SH Ridley, H Yarwood, NE Miller, B Oral, S Nithyanathan, G Taylor and DO Haskard. High-density lipoproteins differentially modulate cytokine-induced expression of E-selectin and cyclooxygenase-2. *Arterioscler Thromb Vasc Biol* 1999; 19: 910–917.
- Drew BG, Fidge NH, Gallon-Beaumier G, Kemp BE, Kingwell BA. High density lipoprotein and apolipoprotein AI increase endothelial NO synthase activation by protein association and multisite phosphorylation. *Proc Natl Acad Sci* (USA). 2004\; 101; 6999–7004.
- 23. Alexander RW. Theodore Cooper Memorial Lecture. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of

arterial inflammatory response: a new perspective. *Hypertension* 1995; **25**: 155–161.

- 24. Xu Q. Biomechanical-stress-induced signaling and gene expression in the development of arteriosclerosis. *Trends Cardiovasc Med* 2000; **10**: 35–41.
- Bhagyalakshmi A, Frangos JA. Mechanism of shear-induced prostacyclin production in endothelial cells. *Biochem Biophys Res Commun* 1989; 158: 31–37.
- Li C, Xu Q. Mechanical stress-initiated signal transductions in vascular smooth muscle cells. *Cell Signal* 2000; 12: 435–445.
- Hu Y, Dietrich H, Metzler B, et al. Hyperexpression and activation of extracellular signal-regulated kinases (ERK1/2) in atherosclerotic lesions of cholesterol-fed rabbits. *Arterioscler Thromb Vasc Biol* 2000; 20: 18–26.
- Xu Q, Liu Y, Gorospe M, et al. Acute hypertension activates mitogenactivated protein kinases in arterial wall. *J Clin Invest* 1996; **97**: 508–514.
- Wernig F, Xu Q. Mechanical stressinduced apoptosis in the cardiovascular system. *Prog Biophys Mol Biol* 2002; 78: 105–137.
- Mayr M, Li C, Zou Y, et al. Biomechanical stress-induced apoptosis in vein grafts involves p38 mitogenactivated protein kinases. *FASEB J* 2000; 14: 261–270.
- 31. Mayr M, Hu Y, Hainaut H, et al. Mechanical stress-induced DNA damage and rac-p38MAPK signal pathways mediate p53-dependent apoptosis in vascular smooth muscle cells. *FASEB J* 2002; 16: 1423–1425.
- 32. Mayr U, Mayr M, Li C, et al. Loss of p53 accelerates neointimal lesions of vein bypass grafts in mice. *Circ Res* 2002; **90**: 197–204.


- Cheng GC, Libby P, Grodzinsky AJ, et al. Induction of DNA synthesis by a single transient mechanical stimulus of human vascular smooth muscle cells. Role of fibroblast growth factor-2. *Circulation* 1996; **93**: 99–105.
- Yamazaki T, Komuro I, Kudoh S, et al. Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes. *J Clin Invest* 1995; **96**: 438–446.
- Hu Y, Bock G, Wick G, et al. Activation of PDGF receptor alpha in vascular smooth muscle cells by mechanical stress. *FASEB J* 1998; 12: 1135–1142.
- Epstein SE, Zhu J, Burnett MS, et al. Infection and atherosclerosis: potential roles of pathogen burden and molecular mimicry. *Arterioscler Thromb Vasc Biol* 2000; 20: 1417–1420.
- 37. Epstein SE. The multiple mechanisms by which infection may contribute to atherosclerosis development and course. *Circ Res* 2002; **90**: 2–4.
- Folsom AR, Nieto FJ, Sorlie P, et al. Helicobacter pylori seropositivity and coronary heart disease incidence. Atherosclerosis Risk In Communities (ARIC) Study Investigators. *Circulation* 1998; **98**: 845–850.
- Danesh J, Peto R. Risk factors for coronary heart disease and infection with Helicobacter pylori: meta-analysis of 18 studies. *BMJ* 1998; **316**: 1130–1132.
- 40. Saikku P, Leinonen M, Mattila K, et al. Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. *Lancet* 1988; **2**: 983–986.
- 41. Fuzio G, Giovino M, Gullot A, Bacarella D, Novo G, Novo S. Atherosclerosis, inflammation and

Chlamydia pneumonia. *World J Cardiol* 2010.1.31–40.

- 42. Mayr M, Kiechl S, Willeit J, et al. Increased Risk of Atherosclerosis is Confined to CagA Positive H. pylori Strains: Prospective Results from the Bruneck Study. *Stroke* 2002.
- 43. Mollenhauer J, Schulmeister A. The humoral immune response to heat shock proteins. *Experientia* 1992;
 48: 644–649.
- 44. Pockley AG. Heat shock proteins, inflammation, and cardiovascular disease. *Circulation* 2002; **105**: 1012–1017.
- 45. Xu Q. Role of heat shock proteins in atherosclerosis. *Arterioscler Thromb Vasc Biol* 2002; **22**: 1547–1559.
- 46. Hansson GK, Libby P, Schonbeck U, et al. Innate and adaptive immunity in the pathogenesis of atherosclerosis. *Circ Res* 2002; **91**: 281–291.
- Hansson GK. Immune mechanisms in atherosclerosis. *Arterioscler Thromb Vasc Biol* 2001; 21: 1876–1890.
- Xu Q, Dietrich H, Steiner HJ, et al. Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. *Arterioscler Thromb* 1992; 12: 789–799.
- 49. Mayr M, Kiechl S, Willeit J, et al. Infections, immunity, and atherosclerosis: associations

of antibodies to Chlamydia pneumoniae, Helicobacter pylori, and cytomegalovirus with immune reactions to heat-shock protein 60 and carotid or femoral atherosclerosis. *Circulation* 2000; **102**: 833–839.

- Maron R, Sukhova G, Faria AM et al., Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of lowdensity lipoprotein receptor-deficient mice. *Circulation* 2002; **106**: 1708–1715.
- Mach F, Schonbeck U, Sukhova GK, et al. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40-CD40 ligand signaling in atherosclerosis. *Proc Natl Acad Sci USA* 1997; **94**: 1931–1936.
- Singh SK, Suresh MV, Voletti B and Agrawal A. The connection between C-reactive protein and atherosclerosis. Annals of Medicine. 2008; 40: 110–120.
- Biasucci LM, Liuzzo G, Grillo RL, Caliguri G, Rebuzzi AG, Buffon A, Summaria F, Ginnetti F, Fadda G, Maseri A. Elevated levels of C-Reactive protein at discharge in patients with unstable angina predict recurrent instability. Circulation 1999; 99: 855–860.

Cover diagram by David Heinrich of the *Medical Illustration and Media Unit, Flinders Medical Centre*. (See chapter 18)

MECHANISMS OF VASCULAR DISEASE

Edited by Robert Fitridge and Matthew Thompson

Chapter 1: Endothelium Chapter 2: Vascular smooth muscle structure and function Chapter 3: Atherosclerosis Chapter 4: Mechanisms of plaque rupture **Chapter 5**: Current and emerging therapies in atheroprotection **Chapter 6:** Molecular approaches to revascularisation in peripheral vascular disease **Chapter 7:** Biology of restenosis and targets for intervention **Chapter 8:** Vascular arterial haemodynamics **Chapter 9:** Physiological haemostasis **Chapter 10:** Hypercoagulable states **Chapter 11:** Platelets in the pathogenesis of vascular disease and their role as a therapeutic target **Chapter 12**: Pathogenesis of aortic aneurysms Chapter 13: Pharmacological treatment of aneurysms Chapter 14: Aortic dissection and connective tissue disorders Chapter 15: Biomarkers in vascular disease Chapter **16:** Pathophysiology and principles of management of vasculitis and Raynaud's phenomenon Chapter 17: SIRS, sepsis and multiorgan failure **Chapter 18:** Pathophysiology of reperfusion injury **Chapter 19:** Compartment syndrome **Chapter 20:** Pathophysiology of pain Chapter 21: Postamputation pain **Chapter 22:** Treatment of neuropathic pain **Chapter 23:** Principles of wound healing **Chapter 24:** Pathophysiology and principles of varicose veins **Chapter 25:** Chronic venous insufficiency and leg ulceration: Principles and vascular biology Chapter 26: Pathophysiology and principles of management of the diabetic foot **Chapter 27:** Lymphoedema – Principles, genetics and pathophysiology **Chapter 28:** Graft materials past and future Chapter 29: Pathophysiology of vascular graft infections

BARR SMITH PRESS An imprint of The University of Adelaide Press