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INTRODUCTION

Restenosis is usually defined as a re-narrowing 
of the arterial lumen occurring after a 
vascular intervention intended to treat 
ischemic lesions. This loss of lumen area 
results from the injury caused by all forms 
of vascular intervention, including direct 
repair (patch angioplasty, endarterectomy) 
and intraluminal approaches (balloon 
angioplasty, atherectomy, stent angioplasty). 
While there are clear differences between 
arteries and veins (review in1), this review 
will also include discussion of stenosis after 
vein bypass grafting or creation of arterio-
venous fistula dialysis access because stenosis 
in these cases also results from injury. 

Lumen enlargement after angioplasty  
or stenting is the result of a combination  
of plaque reduction (compression and embol-
ization), plaque redistribution within or  
outside the lesion area, and vessel expansion 
(see review2). Failure occurs at early times 
because of technical problems and thrombo-
sis (e.g. small diameter vein graft, limited out-
flow, or hypercoagulability) and later times  
(1-18 months) primarily because of injury-
induced scarring. At much later times  
(> 18 months), failure primarily results 
from the ongoing atherosclerotic process. 
Although restenosis occurs within the con-

text of atherosclerosis, the clinical features 
and genetic control of atherosclerosis and 
restenosis are different.3 Atherosclerosis 
develops slowly over decades,4 while resteno-
sis occurs within months to years.5 

The costs of restenosis are considerable, 
since greater than 20% of all interventions 
fail because of restenosis. In the U.S. alone, 
it is estimated that as many as 200,000 cases 
of drug eluting stent (DES) restenosis occur 
every year (see review6). The goal of research 
in this area is to modify vascular healing 
so that injury is repaired without lumenal  
narrowing. The objectives of this chapter 
are to review mechanisms of restenosis and  
current and potential molecular targets to 
prevent restenotic lesions. 

MECHANISMS OF RESTENOSIS

Restenosis results from a combination of 
elastic recoil, thrombosis, remodelling and 
intimal hyperplasia. Three decades ago 
the prevailing view was that restenosis was 
primarily a problem of intimal hyperplasia 
caused by migration of SMCs from the media 
to the intima followed by excessive growth. 
Two decades ago a role for remodelling was 
confirmed and more recently a possible role 
for progenitor/stem cells has gained ground. 
Because recoil is not an issue after stenting 

7  •	� Biology of Restenosis and Targets for  
Intervention
Richard D. Kenagy

Centre for Cardiovascular Biology, Department of Surgery, University 
of Washington, Seattle, WA, USA



Mechanisms of Vascular Disease116

and is a mechanical property of elastic layers 
of the artery, we will focus on the roles 
of thrombosis, remodelling and intimal 
hyperplasia, which contribute to varying 
degrees depending on the intervention 
employed (e.g. angioplasty vs. stenting). 

Thrombosis

Thrombosis may occur after vascular 
intervention because of damage to the 
endothelium and possible intimal and medial 
dissection. Mechanisms of this process are 
presented more fully in Chapter 10 on 
the haemostatic system. Briefly, exposure 
of underlying tissue factor to blood causes 
thrombin and fibrin generation, which 
along with platelets may lead to thrombotic 
occlusion.7 Adherence of platelets is 
mediated by receptors such as the integrin, 
IIb/IIIa. Aggregation of platelets causes 
the release of numerous factors, including 
thromboxane A2, ADP, serotonin, and 
matrix metalloproteinases 2 and 9, that 
further stimulate platelet adherence and/
or aggregation.5,8 Platelets also release a 
variety of growth and chemotactic factors.8 
Thrombus can act as a scaffold through 
which SMCs migrate and both synthesize 
and degrade extracellular matrix components, 
thus reorganizing the thrombus. While 
anti-platelet therapy largely prevents acute 
thrombosis after vascular intervention, late 
thrombosis in DES remains of concern 
prompting prolonged anti-platelet therapy.6 
Even in the absence of thrombotic occlusion, 
there is considerable evidence of a relationship 
between the early thrombotic response and 
the later development of restenosis.9 Anti-
platelet therapy, particularly inhibitors of 
IIb/IIIa in both animals and humans has 
demonstrated the importance of platelets 
to the restenotic process.8,10-13 For example, 
knockout of P2Y12, the ADP receptor on 
platelets, or its blockade using clopidogrel 

inhibits neointimal formation after arterial 
injury.14 Fibrin deposition on stent struts and 
decreased heparin cofactor II, a thrombin 
inhibitor, are both associated with in-stent 
restenosis15,16 (Table 7.1). Larger platelets, 
which contain more prothrombotic material 
per unit volume, are also associated with 
restenosis.17 However, the clinical relevance 
of these findings has not been fully evaluated. 
For example, low platelet responsiveness to  
clopidogrel, a predictor of thrombotic com
plications, is not a predictor of DES 
restenosis.18

Remodelling

Remodelling refers to a change in the total area 
of the vessel (generally measured as a loss of the 
area within the external elastic lamina) that 
affects lumenal dimensions of the blood vessel 
not attributable to vasospasm, vasodilation, 
or changes in wall area. Remodelling can be 
favorable (outward, positive, compensatory, 
or adaptive) or unfavorable (inward, negative, 
or maladaptive). Vascular remodelling 
occurs normally in response to changes in 
blood flow, wall mass, or wall tension (as 
during normal development, atherosclerotic 
lesion development, or hypertension) as an 
adaptation to maintain normal blood flow 
(see review19). Post-angioplasty, arteries show 
further gains in lumen area between 1 day 
and 1 month after angioplasty, but then lose 
some vessel area thereafter with restenotic 
arteries showing a greater loss than non-
restenotic arteries. Negative remodelling 
contributes more than intimal hyperplasia 
to restenosis after coronary and peripheral 
artery angioplasty5,96 and in vein graft 
stenosis,1,97,98 but in rigid artificial grafts and 
stented arteries intimal hyperplasia is the 
primary mechanism of restenosis.5 

The regulation of arterial remodelling 
is poorly understood, but since wall ten-
sion and shear stress are normally regulated 
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Factor (+ if 
positively, - if 
negatively 
associated)

Independent 
Predictor of 
restenosis after:

Not an Independent 
Predictor of 
restenosis after:

Patients, 
N Citation

Patient Characteristics

End stage renal 
disease (+)

Fem-pop BMS 511 [20]

Coronary DES (recurrent 
restenosis)

990 [21]

Coronary BMS 34 [22]

Diabetes (+) Carotid endarterectomy 243 [23]

Carotid endarterectomy 308 [24]

Lower extremity 
angioplasty 

40 [25]

Angioplasty of AV fistula 140 [26]

Renal artery stent/
angioplasty 

91 [27]

Coronary SES or PES 545 [28]

Coronary SES 1312 [29]

Coronary stent 3104 [30] 

SES for coronary BMS 
restenosis

244 [31]

Coronary BMS 345 [32]

Coronary BMS and 
DES 

274 [33]

Coronary angioplasty 92 [34]

Coronary BMS 109 [35] 

Vascular Characteristics

Echolucent femoral 
(non-target) lesion (+)

Carotid endarterectomy 321 [36]

Echolucent plaque (+) Carotid endarterectomy 308 [24]

Coronary angioplasty 92 [34]

Collagen content (+) Femoral endarterectomy 217 [37]

Positively remodeled 
lesion (+)

Coronary BMS 85 [38]

Coronary BMS 113 [39]

Table 7.1: �Recent Studies of Biologically Relevant, Non-technical Factors Implicated 
in Restenosis
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Factor (+ if 
positively, - if 
negatively 
associated)

Independent 
Predictor of 
restenosis after:

Not an Independent 
Predictor of 
restenosis after:

Patients, 
N Citation

Decreased 
macrophages, lipid 
core in lesion (+)

Carotid endarterectomy 500 [40]

Atherosclerotic 
burden – Gensini 
score (+) 

Coronary angioplasty 345 [32]

Brachial intima/media 
thickness

Iliac/femoral angioplasty; 
BMS

128 [41]

Impaired forearm 
reactive hyperemia (+)

Coronary BMS 47 [42]

Coronary BMS DES 136 [43]

Iliac/femoral 
angioplasty; BMS

128 [41]

High collateral 
function (+)

Coronary BMS 95 [44]

Coronary angioplasty 64 [45]

Coronary angioplasty 91 [46]

Coronary BMS 58 [47]

SNPs and soluble factors

Growth Inhibitors and Stimulants

eNOS (Glu298Asp) 
(+ TT)

Coronary BMS 106 [48]

eNOS (Glu298Asp) 
(+ TT)

Coronary BMS 226 [49]

eNOS (Glu298Asp) Coronary BMS 3104 [30]

Heme Oxygenase-1 
promoter (GT)

n
 length 

polymorphism (+)

Coronary BMS 323 [50]

Coronary BMS 1807 [51]

p27 -838C>A (+ CC) Coronary BMS 715 [52]

Nurr1 haplotype (-) Coronary BMS 601 [53]

Pre-procedure 
Adiponectin (-)

Coronary BMS in end 
stage renal disease 

71 [54]

Pre-procedure HMW 
adiponectin (-)

Infrainguinal saphenous 
vein graft 

225 [55]
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Factor (+ if 
positively, - if 
negatively 
associated)

Independent 
Predictor of 
restenosis after:

Not an Independent 
Predictor of 
restenosis after:

Patients, 
N Citation

Change in adiponectin 
(-)

Coronary BMS and DES 32 [56]

Pre-procedure 
Resistin (+)

Infrainguinal saphenous 
vein graft 

225 [55]

Coronary BMS 70 [57]

Inflammation

Pre-procedure CRP 
(+)

Angioplasty of femoral, 
popliteal arteries

172 [58]

Carotid endarterectomy 64 [59] 

Coronary DES 167 [60]

Coronary DES 134 [61]

Coronary angioplasty 
and BMS

850 [62]

Coronary angioplasty 345 [32]

Coronary angioplasty 162 [63]

Coronary angioplasty 168 [64]

Coronary angioplasty 345 [65]

Coronary angioplasty 216 [66]

Meta-analysis of 
coronary angioplasty 
(includes [64] [66])

1062 [67]

IL-1B–511 SNP(T/C) 
(+ TT)

Coronary stent (type 
unclear)

165 [68]

Coronary angioplasty 171 [69]

IL-1R antagonist*2 (-) Coronary angioplasty 171 [69]

Pre-procedure IL-3 
(+)

Coronary stent (type 
unclear)

205 [70]

IL-6 SNP (-174 G/C) 
(+ CC)

Fem-pop angioplasty 281 [71]

IL-6 SNP (-174 G/C 
and -572 G/C) 

Coronary BMS 3104 [30]

Pre-procedure 
soluble CD40 ligand 
(+)

Coronary angioplasty 70 [72]

Coronary angioplasty 162 [63]



Mechanisms of Vascular Disease120

Factor (+ if 
positively, - if 
negatively 
associated)

Independent 
Predictor of 
restenosis after:

Not an Independent 
Predictor of 
restenosis after:

Patients, 
N Citation

CD11b level and 
activation on 
leukocytes (+)

Coronary BMS 62 [73]

CD18 SNP  
(1323 C/T) (+ TT)

Coronary stent 1207 [74]

CD14 SNP (-260C/T) 
(+ CC)

Coronary BMS 3104 [30]

Change in MCP-1 
blood levels (+)

Coronary DES BMS 32 [75]

TNFα –238G-1031T 
haplotype (+)

Coronary angioplasty 3104 [76]

TNFα release during 
procedure (+)

BMS into stenotic 
saphenous coronary 
bypass graft 

18 [77]

CCL11 (Eotaxin) 
SNP (-1328G/A)  
(+ GG)

Coronary BMS 3104 [30]

Colony Stimulating 
Factor 2 SNP 
(Ile117Thr) (+ Ile)

Coronary BMS 3104 [30]

Colony Stimulating 
Factor 3 at 24 hours 
(+)

Coronary BMS 40 [78]

Oxidized LDL 
change (+)

Coronary BMS after 
acute infarction 

109 [35] 

Pre-procedure 
monocyte VEGF 
expression (+)

Coronary BMS and 
SES 

41 [79]

CD34+ cells on day 
7 (+)

Coronary BMS 40 [78]

CD34+ cells (+) Coronary BMS 17 [80]

Complement/Lectin

Mannose Binding 
Lectin (MBL) 2, A/A 
alleles (+)

Carotid endarterectomy 123 [81]

Pre-procedure 
Complement C3 (+)

Carotid endarterectomy 64 [82] 
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Factor (+ if 
positively, - if 
negatively 
associated)

Independent 
Predictor of 
restenosis after:

Not an Independent 
Predictor of 
restenosis after:

Patients, 
N Citation

Complement C3 
SNP (Arg102Gly) 

Coronary BMS 3104 [30]

Pre-procedure 
C1-Inhibitor (+)

Carotid endarterectomy 64 [59]

Change in VEGF 
and PDGF-AB in 
patients with MBL2 
A/A alleles (+)

Carotid endarterectomy 53 [83]

Vasoactivity

Beta2 adrenergic 
receptor SNP 
(Arg16Gly) (+ Gly)

Coronary BMS 3104 [30]

Asymmetric dimethyl 
arginine (+)

Angioplasty of failed 
AV fistula in ESRD

100 [84]

Pre-procedure 
N-terminal Brain 
Natriuretic Protein 
(+)

Coronary angioplasty 345 [32]

Post-procedure 
N-terminal Brain 
Natriuretic Protein 
(+)

Coronary BMS and 
DES

249 [85]

Haemostatic/Fibrinolytic system

Mean platelet 
volume (+)

Meta-analysis coronary 
angioplasty and stent

430 [17]

Heparin Cofactor II  
(-)

BMS in restenotic fem-
pop post angioplasty

63 [16]

Coronary BMS 134 [86]

Urokinase (+) Coronary BMS 49 [87]

Other

Pre-procedure LDL 
particle size (+)

Coronary BMS and 
DES 

274 [33]

Lipoprotein(a) (+) Coronary BMS 109 [88] 

Active MMP9 (+) Coronary BMS 286 [89]

MMP9 (+) Coronary stent 40 [90]
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Factor (+ if 
positively, - if 
negatively 
associated)

Independent 
Predictor of 
restenosis after:

Not an Independent 
Predictor of 
restenosis after:

Patients, 
N Citation

Active MMP3 or 
MMP9

Coronary BMS 152 [91]

MMP2 and MMP9 
(+)

Coronary DES 85 [92]

5A/6A MMP3 SNP 
(6A+) 

Coronary BMS 344 [93]

Coronary BMS 198 [94]

Coronary angioplasty 287 [94]

Coronary angioplasty 48 [95]

Pre-procedure 
Pregnancy-
associated plasma 
protein A (+)

Coronary angioplasty 162 [63]

This table is not an inclusive list of all studies of risk factors for restenosis. Studies showing non-technical 
factors as independent risk factors for restenosis (i.e. angiography, duplex US) by multivariate analysis were 
included as were studies showing a lack of independence of these same factors. 

within a narrow range in mammals (see 
review19), it must involve the transduction 
of the forces of shear stress and wall tension 
into biochemical signals leading to the break-
ing and reforming of ECM attachments, 
both matrix to matrix and cell to matrix. 
For example, the wall thickening that occurs 
in vein grafts and hypertensive arteries nor-
malizes wall tension. A mechanoregulation 
model of remodelling proposed by Grinnell 
and colleagues, in which strain-regulated 
cell migration and collagen translocation 
can produce large scale tissue movement,99 
is relevant to both vascular and cutane-
ous injury, which share several features. For 
example, skin wounds contract as do nega-
tively remodelling arteries, ECM changes are 
similar in injured skin and artery (increased 
biglycan and versican and less decorin), and 
smooth muscle actin-positive cells appear in 

the skin wound (myofibroblasts) and in the 
injured arterial adventitia. Of interest, there 
is a possible association between abnormal 
skin wound healing and restenosis.100 Sup-
port for a mechanoregulatory model comes 
from observations after vascular and cuta-
neous injury. Releasing tension by external 
wrapping of arteries and by external pressure 
or skin flapping to skin wounds causes tis-
sue regression through apoptosis and loss of 
ECM.101-103 Detaching collagen gels embed-
ded with SMCs so that they float releases 
tension and causes SMC death and inhibits  
ECM production.104 Finally, increasing  
tension by stretching arteries ex vivo and by 
external skin splinting causes cell proliferation 
and increased tissue mass.105-107 The tension 
in the cell-ECM has been shown to regulate 
which signaling pathways are utilized,99 and 
several signaling mediators are implicated in 
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the regulation of remodelling. One example 
is NO, but while NO formed by iNOS and 
nNOS inhibits negative remodelling, that 
formed by eNOS does not influence remod-
elling. Whether the particular isoform of 
NOS or the particular cell expressing NOS is 
critical is not known. The P2X4 ion channel, 
which is needed for NO production, is also 
necessary for flow-mediated remodelling, as 
is the cytoskeletal filament, vimentin, which 
is a key intracellular protein in the transmis-
sion of contractile forces.19

The roles of the adventitial, medial, and 
intimal layers of the artery in remodelling 
are not clear though each provide significant 
mechanical strength to the human artery.108 
Some data suggest that adventitial fibrosis 
and collagen accumulation contribute to 
negative remodelling.109 SMCs synthesize 
collagen fibrils in a manner dependent on 
fibronectin fiber assembly, α2β1 integrin, 
and RhoA activity, as well as an intact actin 
cytoskeleton, which is required for tension 
development.110 Of interest, blockade of 
fibronectin assembly or Rho kinase prevents 
positive arterial remodelling.111,112 Fibronec-
tin regulates signaling by the transcrip-
tion factor NFκB,113 which mediates α2β1 
integrin-directed SMC collagen gel contrac-
tion114 and remodelling of vessels caused by 
circumferential and axial stress.106,107,115,116 

Finally, inhibition of ECM protein cross 
linking by inhibition of lysyl oxidase or 
transglutaminase inhibits negative remod-
elling after angioplasty and blood flow 
reduction, respectively.117,118 Thus, arterial 
remodelling may involve the interaction of 
mechanical stress with fibronectin/collagen 
fibrillogenesis mediated by integrin/NFκB 
signaling as well as ECM cross-linking. The 
possible roles in remodelling of MMPs and 
other ECM components will be discussed 
below (sections on matrix metalloprotei-
nases and extracellular matrix/receptors). 
Finally, ongoing studies are focused on 

defining genetic determinants of murine 
flow-induced remodelling.19

Intimal hyperplasia

Intimal hyperplasia results from the net 
increase in cell number and ECM, which 
are dependent on rates of cellular migration, 
proliferation, and death and on rates of ECM 
synthesis and degradation, respectively. Our 
understanding of the underlying cellular 
mechanisms of intimal hyperplasia comes 
from animal models of vascular injury, since 
the ability to study the human response at the 
cellular and biochemical level has been limited. 
A variety of methods of arterial injury has 
been employed including a partially inflated 
Fogarty embolectomy catheter, loose-fitting 
external cuffs, endolumenal wires or nylon 
loops, adventitial electrical injury, complete 
or partial arterial ligation, and stents. Some 
of these methods share features of clinically 
used interventions (e.g. stents) while others 
do not (ligation; see review119). Despite their 
limitations, animal models of vascular injury 
have provided a general understanding of the 
sequence of events after injury.120

Sequence of Events after Injury 
The sequence of events after arterial injury 
is illustrated in Figure 7.1. Depending on 
the type of injury, endothelial cells are either 
injured or completely removed resulting 
in the loss of the quiescent endothelial cell 
layer, which inhibits SMC proliferation and 
intimal hyperplasia.121,122 Within 30 minutes 
of balloon injury up to 70% of medial SMCs 
die via apoptosis. Placement of vein grafts 
and stents into the arterial circulation, as 
well as arterial ligation, also cause apoptosis 
(review in2). Some data suggest that cell 
death increases intimal hyperplasia,123-125 but 
SMC death by itself does not appear to cause 
intimal hyperplasia.126

Prior to the start of proliferation, SMCs 
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in the media express high levels of SMC-
specific contractile proteins, such as smooth 
muscle alpha actin (SMA), and are quiescent 
with no significant ECM production. After 
injury, SMCs change to a de-differentiated 
phenotype with SMCs expressing decreased 
levels of SMC-specific contractile proteins127 
and increased levels of migration, prolifera-
tion, and ECM synthesis. The regulation of 
this transition has been studied at the trans
criptional level for markers of SMC differ-
entiation128 and for many years it has been 
assumed that expression of these genes might 
inhibit proliferation. Recent data supports 
this for SMA in that specific mutations in 
SMA cause SMCs to proliferate faster in 
vitro and cause coronary artery disease.129

The medial SMC proliferation rate dur-
ing the first two to four days jumps from  

0.06% before injury to 10-40% in the 
injured arteries of rats, mice, rabbits, and 
non-human primates (review in2). Adventi-
tial proliferation begins earlier and is main-
tained along with medial proliferation.130 
Animal and clinical studies with stents indi-
cate that intimal hyperplasia is generally cor-
related with the degree of injury.2,15 By four 
weeks cell growth in the media and adventi-
tia returns to baseline. By eight weeks, when 
intimal growth is maximal, growth returns 
to baseline in endothelialized intima, but 
SMCs at the luminal surface in deendothe-
lialized areas continue to proliferate at a low 
rate.131

Migration of medial SMCs into the rat 
and mouse neointima occurs as early as 4 days 
after injury.132,133 The role of SMC migra-
tion in human vessels remains an unknown, 

Figure 7.1: Sequence of events leading to intimal hyperplasia after arterial injury including histological 
cross-sections of injured rat carotid arteries: (a) normal vessel. Note the single layer of endothelium 
in the intima; (b) denuded vessel at two days. Note the loss of endothelium; (c) denuded vessel at 
two weeks. Intima is now markedly thickened due to smooth muscle migration and proliferation; and  
(d) denuded vessel at 12 weeks. Further intimal thickening has occurred. Internal elastic lamina indicated 
by an arrow.
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because the presence of intimal SMCs in nor-
mal arteries as well as in arterial lesions makes 
the measurement of migration impossible by 
currently available methods. In addition, 
the long term significance of medial SMC  
migration is uncertain, since pharmaco-
logical inhibition of migration causes only  
transient inhibition of intimal hyperplasia  
(e.g. MMP inhibitors and heparin; see 
review2). Thus, especially when there are pre-
existing intimal SMCs, the impact of medial 
SMC migration is not clear. 

There are very little data on the rate  
of growth of lesions in humans as most  
studies report baseline and final lesion size 
and serial angiography after angioplasty does 
not differentiate between negative remodel-
ling and intimal hyperplasia. Available data  
indicates that intimal growth in stents 
is greatest from 0-6 months with a small 
increase (in DES) or decrease (in BMS) 
between 6–24 months.134,135 Maximal  
intimal hyperplasia is achieved by 2 months 
after arterial injury in rats, rabbits and 
baboons131,136,137 and after stenting in rats.138 
Differences in the thrombotic response139 
as well as differences in rates of recovery of 
the endothelium140 may explain some of this  
variability. Genetic differences can explain 
some but not all of these differences in  
animals as well as humans.3,141-143

A considerable number of risk factors 
for restenosis are associated with intimal 
hyperplasia (Table 7.1). Regarding renal fail-
ure and type 2 diabetes, while there are few 
studies of arterial injury in animal models  
of type 2 diabetes (in contrast to type 1)144  
or renal failure, increased intimal hyper
plasia is observed in arterio-venous fistu-
las in a mouse model of renal failure and 
in vein grafts in a mouse model of type 2 
diabetes.145,146 In addition, SMCs obtained 
from type 2 diabetic patients display 
increased proliferative and migratory capac-
ity in vitro compared to SMCs from non-

diabetic patients.147 A SNP of p27, which 
is an inhibitor of cyclin-dependent kinases 
and proliferation,148 increases basal promoter 
activity and is associated with less restenosis.52  
Certain haplotypes of Nurr1, a transcrip-
tion factor that inhibits SMC proliferation, 
are associated with restenosis.53 eNOS SNPs 
associated with restenosis may decrease  
levels of NO, which is a SMC growth inhibi-
tor as well as vasodilator,149 Adiponectin, 
which inhibits SMC growth,150 is negatively 
associated with restenosis. In contrast, resis-
tin, which is positively associated with res-
tenosis, stimulates SMC growth.151 Finally, 
a role for cell proliferation in vein graft  
stenosis is supported by the increased prolif-
erative capacity of cells cultured from veins 
of patients that develop stenosis.152

Several predictive factors for restenosis  
may be associated with decreased blood 
flow through the lesion (Table 7.1), which 
is known to increase intimal hyperplasia 
in animal models.153 These factors include 
impaired forearm reactive hyperemia, which 
may indicate poor dilation in the lesion 
area, and high collateral function, which 
may divert blood from the lesion. Other 
factors influence eNOS, which synthesizes 
the vasodilator NO. These are an eNOS 
SNP associated with restenosis, which may 
decrease eNOS function, and asymmetric 
dimethyl arginine, which inhibits eNOS and 
which is increased in the blood of restenotic 
patients.84 Finally, a beta2 adrenergic recep-
tor SNP may decrease the vasodilatory func-
tion of this receptor30 (Table 7.1).

Origin of intimal cells
Early experiments on the arterial response 
to injury indicated that medial SMCs were 
the source of intimal cells after injury (see 2),  
but more recent studies of arterial injury 
in chimeric mice and rats suggested that a 
significant number of intimal SMCs are 
of bone marrow origin(review in;154,155 see 
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figure 7.2 for possible sources of the major 
cells of the intima). However, these data have 
been called into question by investigators 
using more robust microscopic techniques 
for detecting double labeled cells.156-159 In 
addition, while some studies have shown 
a correlation between the risk of human 
coronary BMS restenosis and the increase 
in circulating CD34+ cells and their ability 
to differentiate into SMCs in vitro,78,80 the 
significance of these data is not clear in the 
absence of data showing a contribution of 
these cells to intima formation in humans. 
Another possible source of intimal cells  
is suggested by studies in rats, pigs, and 
rabbits that indicate that adventitial cells 
migrate into the intima (review in160). 
However, other investigators did not find 
significant adventitial involvement in 
porcine coronary intima formation with161,162 
or without complete interruption of the 
media (see review154). While recent reports 
demonstrate the presence of adventitial cells 

in rat and human arteries and veins that can 
differentiate into SMCs, the contribution of 
adventitial cells to intimal hyperplasia remains 
uncertain.158,163,164 In addition, evidence from 
studies of embryonic development and with 
cultured endothelial cells demonstrate that 
endothelial cells can undergo a phenotypic 
transition to SMCs making these another 
potential source of intimal cells.165 Overall, 
the data suggest a medial and possibly 
adventitial origin of intimal SMCs. 

Inflammation
There is a strong correlation between 
inflammation and restenosis after angio
plasty or stent placement15,166 and between 
macrophages in the primary lesion and the 
occurrence of restenosis after angioplasty167 
(reviewed in168). While many individual 
studies have not demonstrated an independent 
association between pre-procedural blood 
levels of the acute phase protein, CRP, 
and coronary restenosis, a meta-analysis of 

Figure 7.2: Possible sources of intimal cells after arterial injury.
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coronary angioplasty studies showed CRP 
as an independent predictor (Table 7.1). In 
addition, a study of peripheral angioplasty 
showed a much stronger relationship between 
restenosis and 48 hour post-angioplasty 
CRP levels than with pre-procedural levels.58 
Whether CRP is related to vein graft stenosis 
is not clear.169

Data from models of injury that both do 
and do not denude the vessel of endothelium 
indicate that inflammation promotes inti-
mal hyperplasia. Leukocyte recruitment to 
the injured vascular wall occurs via binding 
to adherent platelets170 and to cell adhesion 
molecules that are up-regulated by injury, 
such as ICAM-1 and VCAM-1.171 Knockout 
or blockade of VCAM-1 or of the inflam-
matory cell integrin, Mac1, inhibits lesion 
formation after injury because of decreased 
leukocyte recruitment.10,172,173 Inhibition of 
monocyte recruitment using a dominant-
negative mutant of MCP-1, a major mono-
cyte chemoattractant, also inhibits intimal 
hyperplasia after angioplasty in rats, non-
human primates,174 and hypercholesterolemic 
rabbits.175 Finally, simultaneous myocardial 
infarction increases intimal hyperplasia after 
femoral artery injury possibly via increased 
levels of circulating IL-6 and TNFα.176 

A number of inflammatory factors are  
predictors of restenosis. The number of 
inflammatory cells in stented lesions,15 activa-
tion status of Mac1 on leukocytes,73 a CD18 
(a Mac1 subunit) SNP,74 and the change in 
blood levels of MCP-1 are associated with res-
tenosis75,177 (Table 7.1). Of note, rapamycin  
is anti-inflammatory.178 In addition, pred-
nisone, another anti-inflammatory drug, 
decreases late lumen loss in coronary BMS 
and the release of TNFα from the patients’ 
monocytes. This reduction in TNFα release 
correlates with late lumen loss179 (Table 7.1). 
However, there are conflicting results with 
the -174 G/C and -511 polymorphisms of 
IL-6 and IL-1, respectively, in studies of the 

coronary and peripheral circulation.66,69,180 
Despite this there is a clear association of 
inflammation with restenosis. 

Role of ECM production 
Both cell proliferation and ECM production 
contribute to intimal hyperplasia131, and 
intimal area more than doubles between 
two and eight weeks after injury because of 
ECM accumulation. The stable neointima is 
about 20% SMCs and about 80% ECM.131 
Rates of SMC replication are extremely low 
in restenotic tissue,5,181 leading Glover and 
colleagues to suggest that changes in ECM 
are the major factor in restenosis several 
months to years after stent placement. Of 
interest, re-injury to the rat carotid artery one 
month after a prior balloon injury increases 
intimal lesion size entirely as a result of 
increased ECM.182 In this regard, it should 
be noted that rapamycin inhibits induction 
of major ECM proteins such as collagen 
and hyaluronan.183,184 The lack of evidence 
for substantial SMC proliferation in either 
angioplasty or stent stenosis suggests that 
therapies may be better aimed at altering the 
synthetic phenotype of SMCs, which would 
control ECM synthesis as well as proliferative 
capacity.

THE CONTRIBUTION OF 
SPECIFIC FACTORS TO 
RESTENOSIS

Growth factors/cytokines

Activated platelets, leukocytes, endothelial 
cells, macrophages, and SMCs can release a 
great number of growth factors and cytokines 
after arterial injury, including PDGF, 
FGF2, TGFβ, TGFα, vascular endothelial 
cell growth factor, macrophage colony 
stimulating factor, granulocyte macrophage 
colony stimulating factor, platelet-derived 
endothelial cell growth factor, IL-1, IL-4, 
IL-6, IL-8, IL-18, MCP, and TNF.185 Many 
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of these factors have been shown to play roles 
in intimal hyperplasia and remodelling after 
arterial injury,2 but we will focus on only 
three of these factors. 

PDGF is a family of four gene products 
(A, B, C, and D chains) that dimerize into 
five functional growth factors (AA, AB, BB, 
CC, and DD), which bind differentially to 
homo- or hetero-dimers of two receptor sub-
units, α and β (see review186). PDGF plays a 
major role in the migration of SMCs after 
injury, while playing a minor role in SMC 
proliferation.186 The β receptor subunit 
mediates intimal hyperplasia in non-human 
primates, which suggests a role for the PDGF 
isoforms B and D, and possibly C. However, 
there is also evidence for a role of PDGF-AA 
and, therefore, PDGF receptor α in intimal 
hyperplasia in the rat.186 Of interest, con-
comitant treatment of non-human primates 
with blocking antibodies to both PDGF 
receptor isoforms causes intimal regression 
in polytetrafluroethylene grafts, while treat-
ment with either alone does not.187 A single 
intravenous infusion of a humanized version 
of this PDGFRβ antibody did not alter BMS 
restenosis,188 but plasma concentrations con-
sidered effective were maintained for only 
two weeks. 

FGF2 stimulates medial SMC prolif-
eration and migration to the intima in the 
injured rat carotid, and blockade of both 
FGF2 and PDGF with antibodies results in 
an additive inhibition of intimal hyperplasia. 
However, FGF2 plays no role in the prolif-
eration of intimal SMCs, and the intimal 
hyperplastic response in FGF2 knockout 
mice is normal (see review2). However, these 
mice display decreased SMC contractility,189 
which is consistent with the observation that 
a blocking antibody to FGF2 inhibits nega-
tive remodelling in the mouse carotid tie-off 
model.190

Although infusion of TGFβ1 stimulates 
medial SMC proliferation and antibody 

blockade slightly inhibits intimal hyperplasia, 
the more striking effect of blocking the action 
of TGFβ is on remodelling and ECM produc-
tion (see review191). Blockade of TGFβ with 
a soluble receptor blocks negative remodel-
ling, the transition of adventitial fibroblasts 
to myofibroblasts, and the deposition of col-
lagen and versican. In stents, blockade of the 
TGF receptor does not alter intimal thicken-
ing but alters inflammatory cell number and 
extracellular matrix composition.192

Interactions among growth factors after 
injury are a significant though largely unex-
plored aspect of restenosis. For example,  
TGFβ can synergistically augment the mito
genic action of PDGF and FGF2.191 In addi-
tion, IL-1β augments the proliferative effect 
of PDGF-BB on SMCs by inhibiting expres-
sion of p21 and p27, but inhibits PDGF-
BB mediated SMC migration (see review2). 
Such interactions may augment hyperplasia 
in areas of inflammation (such as near stent 
struts) by slowing SMC movement and 
increasing proliferation. 

Inhibitors

Numerous factors are inhibitors of intimal 
hyperplasia. For example, NO can inhibit 
SMC migration and proliferation after arte-
rial injury149 and prostacyclin inhibits intimal 
hyperplasia via its receptor IP.193 Heparin and 
the heparan sulfate proteoglycans, perlecan 
and syndecan-1, inhibit SMC proliferation 
and migration, thus inhibiting injury medi-
ated intimal hyperplasia.194-196 In addition, 
overexpression of heparanase, the enzyme 
responsible for degrading the heparan sulfate 
glycosaminoglycans, causes increased inti-
mal hyperplasia after stent-induced injury.197 
The normal adventitia inhibits medial SMC 
migration and proliferation.121 Similarly, nor-
mal periadventitial adipose tissue inhibits inti-
mal hyperplasia after injury at least partially 
through the action of adiponectin.198 Other 
factors known to inhibit intimal hyperplasia 



Biology of Restenosis and Targets for Intervention 129

include interferon γ, hepatocyte growth fac-
tor, interleukin 10, adrenomedulin, somato-
statin, and endothelin.2 

In recent years, it has become clear that 
the effect of a single ligand is often dictated 
by the relative expression of receptor isotypes, 
which can have opposing roles. For example,  
in the vascular system S1P binds to the 
GPCRs, S1PR1, 2, and 3. Data indicate that 
S1PR1 and S1PR3 are stimulators of intimal 
hyperplasia after injury, while S1PR2 is an 
inhibitor in this regard.199 Another GPCR 
ligand, LPA, binds to LPA1 through 5. 
LPA1 is inhibitory towards SMC migration, 
while LPA3 appears to be stimulatory.200 
Prostaglandin E

2
 also binds to GPCRs, EP1 

through EP4. Receptors EP
1
 and EP

3
 induce 

vasoconstriction, whereas EP
2
 and EP

4 
induce 

vasodilatation.201 Activation of EP4 increases 
ductus intimal cushion formation202 suggest-
ing the possibility that other EP receptors 
may mediate the growth inhibitory effects 
often described for PGE in vitro. 

Coagulation and fibrinolytic factors

Arterial injury in pigs and primates is 
associated with thrombosis, which is usually 
not occlusive but does release mediators of 
SMC growth and migration. Rodent models 
of arterial injury are usually not associated 
with thrombus formation,203 although it  
is possible that intimal hyperplasia is being  
driven by short-lived microthrombi or by  
thrombogenic factors such as TF7, throm
bin,204 and factor Xa205 at levels too low to 
generate thrombus formation. While TF 
drives intimal hyperplasia after injury because 
of increased SMC migration7, after double 
injury TF mediates negative remodelling,206 

Balloon injury also increases expression 
of the plasminogen activators, urokinase and 
tissue-type plasminogen activator, in SMCs 
(review 207). The plasminogen activators, in 
turn, proteolytically activate plasmin, which 

has a major role in fibrinolysis. Several lines 
of evidence indicate that urokinase is also 
required for SMC migration and prolifera-
tion.207,208 In this regard plasma urokinase is 
a predictor of restenosis.87 Also of interest, 
the urokinase receptor interacts with PDGF 
receptor β which in turn mediates the effects 
of urokinase on migration and proliferation 
in a PDGF-independent manner.209 Finally, 
in contrast to urokinase, tissue plasminogen 
activator has been shown to inhibit SMC 
accumulation after injury and to cause posit
ive arterial remodelling.207

Matrix metalloproteinases 

MMPs are involved in the regulation of both 
intimal hyperplasia and remodelling. Arterial 
injury in numerous species induces the 
production of a number of MMPs, including 
MMPs 2, 3, and 9,208,210 which promote 
intimal hyperplasia and are associated with 
BMS restenosis (Table 7.1).89-92 For example, 
MMP9 is increased in coronary sinus blood 
after stent placement and is associated with 
increased levels of CD34+ progenitor cells,211 
which are predictors of restenosis (Table 7.1). 
High blood flow-mediated positive remodel
ling is mediated by MMP9.212-213 Blockade of 
MMPs with synthetic drugs has mixed results 
on intimal hyperplasia and remodelling2 
probably because of the lack of specificity 
of small molecule inhibitors. In addition, 
hydroximate-based MMP inhibitors can 
inhibit MAP kinase signaling and collagen 
synthesis, which itself can inhibit SMC 
migration.2 Finally, there are active site 
independent effects of MMPs as demonstrated 
by the inhibitory effect of MMP9 on SMC-
mediated collagen gel contraction.214

Extracellular matrix/receptors

At late times after arterial injury as SMC 
proliferation decreases, intimal hyperplasia 
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continues as the result of ECM accumulation. 
Restenotic tissue from humans demonstrates 
lower cell density and substantial amounts 
of an ECM that differs from primary 
atherosclerotic lesions from which restenotic 
lesions arise.5,215 ECM molecules induced 
by angioplasty216 and stenting217 include 
type I collagen, elastin, and hyaluronan as  
well as the proteoglycans versican, perlecan, 
biglycan, and decorin. The ECM of 
restenotic lesions has more biglycan and 
hyaluronan181,216,218,219 and no decorin, unlike 
primary plaques.5 Consistent with lesion 
formation during restenosis, both biglycan 
and hyaluronan increase SMC proliferation, 
while decorin inhibits ECM accumulation 
after injury.220-222

Cellular receptors for ECM compon
ents by which SMCs might act to remodel 
the artery includes the integrins, discoidin 
domain receptors, TLRs, and CD44, all of 
which are induced after vascular injury.223-226 
The family of integrins provides the classic 
example of a binding partner, which is able 
to mediate subcellular signaling.227 Blockade 
of αvβ3 integrin inhibits intimal hyperplasia 
without an effect on arterial remodelling.228 
The stimulatory effect of CCN1, an ECM 
protein upregulated by injury, on intimal 
hyperplasia may be via interaction with 
integrins.229 Discoidin domain receptor 1,  
first described as a signaling receptor of col-
lagens, is required for SMC migration and 
MMP production.230 CD44 binds hyaluro-
nan, collagens, and other ECM molecules 
and mediates SMC proliferation, migra-
tion, and SMC-mediated collagen gel con-
traction.231,232 TRL2 and TLR4, which 
are important components of the innate 
immune system, recognize not only micro-
bial components but also endogenous  
molecules such as versican, biglycan, heparan 
sulfate, and hyaluronan.233-235 Both TLR2 
and TLR4 appear to be required for cuff-
mediated intimal hyperplasia226,236 and TLR4 

is also required for high blood flow-mediated 
outward remodelling.237 MyD88, which is  
a major intracellular mediator of TLR  
signaling, is also required for flow-mediated 
remodelling.238

TARGETS FOR INTERVENTION

Intracellular signaling molecules 

mTOR and microtubules
Current interventions that significantly 
prevent restenosis utilize DES for the 
local application of either rapamycin or 
taxol related drugs.6 The molecular targets 
of rapamycin and taxol are mTOR and 
microtubules, respectively (see review239). 
Rapamycin is known to function as an 
antiproliferative drug through the inhibitory 
effect of a rapamycin/FKBP12/mTOR 
complex. This complex inhibits pro-
proliferative molecules such as p70s6k and 
inhibits anti-proliferative molecules such as 
p27.239 mTOR has two isoforms, mTORc1 
and mTORc2. Inhibition of the latter 
isoform appears to mediate endothelial cell 
toxicity that can lead to thrombosis.240 Newer 
rapamycin analogs, such as everolimus and 
zotolorimus, show promise of decreasing 
problems with late thrombosis.6 The other 
primary type of drug currently used in DES 
is paclitaxel, which binds to the β subunit of 
tubulin thereby stabilizing microtubules and 
preventing mitotic spindle formation during 
cell division. However, this drug also has cell-
cycle independent effects on cell spreading 
and migration.239

Transcription factors 
One transcription factor that has been 
targeted is E2F, a family of transcription 
factors required for DNA synthesis and cell 
cycle progression. Two large clinical trials of 
an inhibitor of E2F were based on animal 
studies in which an E2F decoy (a short 
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double-stranded oligodeoxynucleotide that 
binds E2F) blocked intimal hyperplasia. 
Saphenous vein grafts were treated with  
the E2F decoy before implantation for 
coronary (PREVENT IV) or peripheral 
(PREVENT III) bypass. However, neither 
trial of 3400 and 1600 patients, respectively, 
showed an effect on graft failure.241,242 
Unfortunately, the use of a non-selective E2F 
decoy that inhibits all E2F family members 
may have cancelled out an effect, since a more 
recent study indicates that E2F3 stimulates 
and other E2F family members inhibit SMC 
proliferation and intimal hyperplasia.243 
Despite these negative results vein grafts 
still provide an exceptional opportunity for 
intervention ex vivo before implantation. In 
preclinical studies, other transcription factor 
targets using the decoy technology have 
included Egr-1, which has been implicated 
in many cardiovascular disorders.244 

miRNA 
It is likely that future targets will include 
miRNAs, since these small RNA molecules 
regulate multiple gene products and it is 
unlikely that a single gene will regulate 
all pathways of a complex pathology like 
restenosis. Possible miRNA targets include 
Mir-21, Mir26a, Mir143/145, and MiR-221, 
which have been shown to regulate SMC 
phenotype, growth, death, and migration as 
well as intimal hyperplasia.245-248

Inflammation targets 
One anti-inflammatory drug that has been 
tested is pimecrolimus. This drug binds to the 
cytosolic receptor FK506 binding protein, 
which inhibits the calcium-dependent 
phosphatase calcineurin and the translocation 
of the transcription factor, nuclear factor of 
activated T-cells, to the nucleus preventing 
induction of inflammatory cytokines in 
T cells and mast cells. Based on animal 
models this was expected to reduce arterial 

inflammation and, therefore, neointimal 
hyperplasia and restenosis.249 Instead, 
patients treated with pimecrolimus-eluting 
stents were reported to fare worse than 
patients treated with stents that delivered a 
combination of pimecrolimus and paclitaxel, 
or paclitaxel alone.250 However, other drugs 
are being tested. An anti-inflammatory drug 
with a long history, salicylic acid, is being 
tested as a component of the biodegradable 
backbone of a stent that also has a coat of 
sirolimus.251 Finally, liposomal alendronate, 
a bisphosphanate compound that depletes 
monocytes and inhibits restenosis in rat and 
rabbit models of injury, is in phase II trials 
testing its effects on BMS restenosis (http://
clinicaltrials.gov/ct2/show/NCT00739466). 
Overall it appears that targeting inflammation 
alone may be inadequate to inhibit restenosis, 
although it may be effective as an adjunctive 
target.249

Brachytherapy 
Brachytherapy (radiation treatment) has 
shown success as an adjunctive therapy 
for BMS restenosis after successful balloon 
angioplasty.6 While brachytherapy inhibits 
both negative remodelling and intimal 
hyperplasia, one limitation found initially 
was hyperplasia at the ends of the stents or 
the angioplasty zone when radiation was not 
complete.5,252 In addition, prior brachytherapy 
is a risk factor for stent thrombosis.6 
Brachytherapy is less common now because 
of procedural logistics, concern of long-term 
thrombosis and delayed restenosis, but more 
importantly the availability of DES.6

Extracellular targets and cell-based 
therapies

Angiotensin pathway 
While angiotensin II type 1 receptors mediate 
vascular SMC migration, proliferation, and 
extracellular matrix production after arterial 



Mechanisms of Vascular Disease132

injury and angiotensin-converting enzyme 
inhibitors or specific receptor antagonists 
reduced intimal hyperplasia in several animal 
models, large scale trials of the angiotensin-
converting enzyme inhibitor, cilazapril, 
for balloon angioplasty or BMS failed to 
show benefit.120 However, more recent 
studies show that neointimal hyperplasia 
is inhibited by the angiotensin-converting 
enzyme inhibitor, quinapril, in patients with 
the D/D and I/D genotypes of angiotensin-
converting enzyme.253,254 In addition, use of 
the angiotensin II type 1 receptor antagonist, 
valsartin, decreases the incidence of stent 
restenosis255 and a valsartin-eluting stent is 
equivalent to a rapamycin-eluting stent.256 
These data suggest that angiotensin II type 1  
receptor antagonists may be useful in 
preventing restenosis.

Cell-based therapies
Use of engineered allogeneic endothelial 
cells applied to the adventitial surface to 
prevent restenosis in peripheral interventions 
is in Phase I/II trials at this time (http://
clinicaltrials.gov/ct2/show/NCT01099215). 
This trial is based on work in a porcine stent 
model257 and utilizes the same concept as a trial 
aimed at inhibiting stenosis of arterio-venous 
fistula bypass grafts.258 A Phase IV study 
involving endothelial cells utilizes a coronary 
stent with immobilised anti-CD34 antibody 
with which to capture circulating endothelial 
progenitor cells (http://clinicaltrials.gov/
ct2/show/NCT00494247).259 Finally, the 
possibility of bioengineered bypass grafts 
developed from induced pluripotent stem 
cells or other autologous progenitors holds 
promise as these may also be engineered to 
express or repress targets of choice.260

Differential effects on endothelium 
and SMCs 

A differential effect on endothelium com-
pared to SMCs is a helpful attribute for any 

target for restenosis. The lack of selectivity 
is a problem for rapamycin for which effects 
on endothelium mediate its thrombotic 
side effects. A20 is a zinc finger protein that 
prevents intimal hyperplasia in the injured 
rat carotid artery261. Expression of A20  
in medial SMCs prevents neointima forma-
tion by shutting down inflammation and 
proliferation via inhibition of NF-κB and 
by increased expression of the cell cycle 
dependent kinase inhibitors p21waf1 and 
p27kip1. However, A20 is anti-inflammatory 
in endothelial cells by inhibiting NFκB, 
but this is antiapoptotic via inhibition of 
the activation of caspase 8. Therefore, A20 
has protective effects for endothelial cells 
and anti-proliferative effects on SMCs mak-
ing it a good candidate for inhibiting SMC 
accumulation while minimizing endothelial  
damage. Another differentially effective target 
may be Nogo. Nogo-B is expressed by both 
endothelial cells and SMCs, but it increases 
endothelial cell migration and inhibits SMC 
migration. Nogo-B is down-regulated after 
injury and intimal hyperplasia is greatly 
increased in the Nogo-B null mouse. Trans-
fection of the murine arterial adventitia or 
porcine vein graft adventitia with an adeno
viral vector of Nogo-B greatly inhibited  
intimal hyperplasia.262

Delivery devices 

Garg et al have recently reviewed the use of 
DES and future design technology for the 
coronary arteries.6,251 The issue of drug-
eluting polymers is an area of advancement 
with next generation polymers, including 
biodegradable polymers, avoiding many 
of the past problems with allergic and 
inflammatory reactions. In addition, bio
degradable stents with and without anti-
proliferative drugs are under development. 
These would avoid long term issues of 
inflammation from a foreign body. Stents 
with multiple therapeutic targets are under 



Biology of Restenosis and Targets for Intervention 133

development. One example is a DES that 
targets SMC proliferation and platelets 
with sirolimus and cilostazol, respectively. 
Bi-directional drug delivery from stents may 
allow functional separation of effects on 
SMCs and endothelial cells. Finally, as more 
is learned about the effects of co-morbitities 
on restenosis, such as diabetes, specific DES 
or drug-eluting balloons may be developed 
to use in subsets of patients. 

A common treatment of in-stent res-
tenosis is the use of DES. However, it is 
unclear if another stent adds to the risk of 
stent thrombosis or reoccurrence of res-
tenosis. Drug-eluting balloons are being 
studied as an alternative for this situation. 
In addition, DES have not shown benefit  
in femoropopliteal arteries, which are often 
significantly occluded throughout their 
length and are subject to forces not experi-
enced by coronary arteries (e.g. compression 
and bending) that may cause strut fracture.263 
Drug-eluting balloons have shown promise 
on peripheral artery lesions.264 One advant
age of drug-eluting balloons is illustrated by 
a study of the use of nanoparticles, since the 
nanoparticles move further into the vascular 
wall before eluting their drug cargo and thus 
avoid endothelial cell toxicity.125 There are 
many differences between DES and drug-
eluting balloons including the issue of drug 
delivery kinetics. These as well as current 
and past trials with drug-eluting balloons are 
reviewed by Gray.265

Prevention vs. reversal of restenosis 

Because current strategies to treat restenosis 
are intended to prevent intimal hyperplasia, 
all patients must be treated, even though less 
than one-third of all vascular interventions 
fail. Other options are to develop the ability 
to screen for those patients at high risk or 
to develop a treatment that would reverse 
the restenotic process.261 Observations of 

various SNPs and soluble factors associated 
with restenosis (Table 7.1) suggest that 
screening may be possible in the future. The 
possibility of reversing the restenotic process 
comes from the observation that intima 
formation in stents increases for about 3 
months, but starts regressing spontaneously 
after 6  months261, as well as effects of anti-
hypertensive drugs and of A20, which induce 
vascular regression via SMC apoptosis.261,266 
In addition, when global gene expression is 
compared in two distinct models of vascular 
regression in non-human primates, only  
7 genes are regulated in the same manner 
in both models of atrophy (Kenagy et al, in 
press). Six of these atrophy-associated genes 
are also induced in vitro by the ligand for 
the death receptor Fas, suggesting that these 
genes are an important part of the cell death 
program active during atrophy. Also, a third 
of the up-regulated genes (ADAMTS4, tissue 
plasminogen activator, and hyaluronidase2) 
degrade components of the ECM, loss of 
which is a major feature of vascular atrophy. 
These commonly regulated genes may play 
a fundamental role in vascular atrophy 
and may lead to drug candidates useful for 
reversing restenosis in those situations where 
intimal hyperplasia is the primary cause. 

CONCLUSIONS

Restenosis is primarily a problem of excessive 
intimal hyperplasia and negative remodelling. 
Human risk factors for restenosis include 
diabetes, renal failure, factors associated 
with decreased blood flow, factors leading to 
decreased growth inhibition, factors leading 
to increased growth stimulation, as well as 
increased inflammation (Table 7.1). These 
data are consistent with data from animal 
models of intimal hyperplasia and support 
further research into how these factors impact 
restenosis. While animal models have been 
useful for understanding basic mechanisms 
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of restenosis, the predictive power of animal 
models for clinical efficacy is still unclear, 
particularly concerning peripheral vessels. 
Correlating animal models and clinical 
application is an active area of research.267 
In addition, most clinical studies are of the 
coronary circulation. The degree to which 
results in the coronary circulation match the 
peripheral circulation is not known, but there 
are differences. Coronary and peripheral 
vessels are embryologically distinct,268 and  
injury of the coronary artery leads to greater 
intima formation than does injury of 
peripheral arteries in pigs and dogs.269-271 In 
addition, the femoropopliteal arteries, but 
not the coronary arteries, are subject to the 
forces of compression, bending, twisting, 
and axial changes caused by joint flexion and 
external impact, which may have a significant 
effect on restenosis. 

Our greatest success at preventing resten
osis, DES, comes as much as a result of 
engineering than of drug development. As 
endovascular techniques continue to evolve, 
the efficacy of drug targets should keep pace. 
Unfortunately, the early promise of the 
Human Genome Project for new therapeutics 
aimed at human disease such as restenosis has 
not been forthcoming. Genome-wide asso-
ciation studies, designed to reveal markers 
or potential causal factors, have revealed that 
cardiovascular pathologies have a complex 
genetic structure. While >20,000 genes and 
more regulatory factors of the RNA world 
have been identified, how these factors are 
related remains largely unknown. However, 
the field of systems biology is poised to have 
a significant impact on vascular biology over 
the coming decade. New types of analysis 
have revealed networks that can explain up 
to 50% of the variance of a complex clinical 
phenotype.272-273 It is hoped that a systems 
biology or similar approach will soon reveal 
key networks and regulatory hub molecules 
that control restenosis. Based on research to 

date it is likely that networks regulating cell 
differentiation, growth, inflammation, and 
ECM production, major aspects of intimal 
hyperplasia, will be featured and that hub 
molecules that link these networks will be 
identified as promising therapeutic targets.
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