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INTRODUCTION

Vascular interventions have developed 
rapidly since the first aortic replacement with 
Dacron by Dubois in 1952. Understanding 
vascular haemodynamics and the biological 
response to implanted materials is essential 
for vascular surgeons and scientists developing 
new interventional technologies.1,2

This chapter will summarise and discuss 
the following laws, equations and phenom-
ena to give a basic understanding of the 
haemodynamic principles of the conduits 
and fluids with which we work:

•	 Laplace’s	law	of	wall	tension
•	 Newtonian	Fluid
•	 Non-Newtonian	fluid
•	 Poiseuille	Flow
•	 Bernoulli’s	equation
•	 Young’s	modulus	and	pulsatile	flow
•	 Mass	conversation
•	 Reynolds’	number:	laminar	and	

turbulent flow
•	 Shear	stress	and	pressure
•	 Forces	on	graft	systems
•	 Computational	modelling

For	 those	 who	 understand	 electrical	 
circuit theory, there is much similarity with 
haemodynamics. Understanding the physi-
ology and physics of blood flow is aided by 
the use of that recognition. When consider-
ing fluid dynamics instead of:

VIR,  (1)

where V is the voltage, I is the current and 
R is the electrical resistance. This formula 
maybe substituted by:

PQR,  (2)

with	P	the	pressure,	Q	the	volume	flow	rate	
and R the flow resistance. 

Resistors in series and parallel govern 
degrees of ischaemia and the behaviour of 
blood flow and contribution of collaterals, 
and hence degree of ischaemia of limbs and 
organs.

The great vessels, like the aorta, are with-
out muscle and their walls are composed of 
collagen and elastin fibres. This allows them 
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to behave as capacitors and store some of 
the energy in systole to be released to power 
flow in diastole, that is so important into 
vessels such as the coronary artery. The elas-
tic arteries stiffen with age and explain the 
flow changes that occur with ageing and for 
progressive arterial disease due to this most 
important of all the risk factors.

LaPLaCe’S	Law	oF	waLL	
teNSioN	

Laplace’s	law	relates	the	tension	in	an	arterial	
or venous wall with the pressure that the 
elastic tube can apply to material inside the 
tube. To assist in understanding this law 
we	 consider	 Figure	 8.1.	 in	 this	 figure,	 w, 
represents the thickness of the arterial wall,  
r is the inner radius of the artery, P the inward 
pressure force due to the elastic nature of  
the artery and T is tensional stress within the 
wall of the vessel, where the tensional stress 
points in a direction that is tangential to  
the vessel wall. Due to mass conservation the 
wall thins as the vessel expands.

the	formula	for	Laplace’s	law	is	given	by	
the	eq.:	

P  T,w
r  (3)

where it is 
usually assumed that the wall thickness, w is 
small relative to r. This law tells us that the 
inward pressure that is exerted by the vessel 
wall on the blood is directly proportional to 
the tensional stress in the wall and inversely 
proportional to the radius of the wall. Thus 
the smaller the vessel the larger the pressure 
it can apply on the blood. 

Large	thin-walled	vessels	are	low	pressure	
vessels. Increasing the pressure distends the 
vessel and increases the vessel volume which 
is	a	characteristic	property	of	veins.	For	arter-
ies to maintain pressure, the width of the wall 
must obviously be greater, so large veins are 
thin-walled and arteries are thick-walled.

One consequence of this behaviour is 
that, to a certain extent, an artery acts like 
a long cylindrical party balloon. When one 
attempts to blow up such a balloon, it is 
quite difficult to do at the first blow, however 
once the balloon reaches a particular radius, 
it usually becomes much easier to expand 
the balloon. That is you require less pressure 
to increase the size of the balloon. This phe-
nomenon is known as instability. If this hap-
pens to an artery, then we are dealing with an 
aneurysm and the relatively constant blood  
pressure will keep on increasing the size of 
the aneurysm.

The radius of the artery at which this 
instability occurs is difficult to compute 
accurately, but some fairly general arguments 
suggest that the following formula is a good 
guide: where r

c
 is the critical radius for the 

onset

rc  2r0,  (4)

of the instability and r
0
 is the initial radius  

of the artery. The median diameter of the 
aorta is 23 mm and the thus aortic rupture is 
very rare when less than 50 mm in diameter, 
which is consistent with recent clinical  

Figure 8.1: Cross section of an artery showing 
the various physical components that make up 
Laplace’s law.
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data.3,4 This guide also directs us to consider 
that the ratio of the diameters is probably 
more important than the absolute diameter 
and this should be taken into account 
when assessing aneurysms in the smaller 
diameter	vessels	of	women.	how	arterial	wall	
instability	 arises	 is	 illustrated	 in	Figure	8.2,	 
where	 in	 Figure	 8.2(a)	 we	 show	 the	 stress	
structure	 within	 a	 small	 artery.	 here	 the	
tensile stresses have a component in the 
radial direction, where the letter T labels this 
component.	in	Figure	8.2(b)	the	aneurysm/
balloon has become very large, such that 
over a small segment of the wall the artery 
has hardly any curvature. This is an extreme 
case, but it does show that there is now no 
radial component to the tensile stresses. In 
such a case, the aneurysm can expand freely 
for just about any internal arterial pressure.

NewtoNiaN	FLuiD

When we wish to describe the behaviour 
of a fluid it is necessary to know something 
about the frictional properties of the fluid. 
Consider the schematic depiction of a fluid 
shown	 in	Figure	8.3.	 in	 this	figure,	fluid	 is	
flowing from left to right along the x direc-
tion.	For	purposes	of	illustration,	we	assume	
that the speed of the fluid, u, is increasing 
with increasing height (i.e., increasing y). This 
means that elements of fluid are sliding past 
each other and so generate some frictional 
stress τ. In a Newtonian fluid, the frictional 
stress is proportional to the rate at which 
the speed changes as a function of distance,  
where µ	 is	 the	 viscosity	 (eq	 (5)).	 the	 
du/dy	 in	 equation	 (5)	 corresponds	 to	 the	
shear rate. To a reasonable approximation, 
one can assume that blood is a New tonian 
fluid, at least for flow along the major  
arteries.

τ   µ  ,du
dy
   (5)

NoN-NewtoNiaN	FLuiD	

Non-Newtonian fluids have a viscosity that 
depends	on	the	strain	rate.	a	shear	thinning	
fluid is a fluid that changes from “thick” to 
“thin” when force is applied to the fluid. 
examples	 of	 such	 fluids	 are	 shampoos	 and	
paints. This behaviour usually occurs, 
because, at rest, a shear thinning fluid 
typically has a tangled molecular structure, 
which makes the fluid relatively viscous. 
When force is applied, the molecules become 
ordered, the fluid viscosity decreases and the 
fluid	begins	to	flow	more	easily.	in	Figure	8.4	 
we show the experimentally determined 
shear thinning behaviour of blood, where 
the hematocrit value for the blood is 45%. 
These data show that for high shear rates, 
which may occur in the large arteries of the 
body, the viscosity of blood is about four 
times that of water (where the viscosity of 
water	is	approximately	one	centipoise	(cP)).	
however	 for	 lower	shear	rates,	 the	viscosity	
of blood can be over one hundred times that 
of water.

This change in viscosity is mostly due to 
the	collective	behaviour	of	red	blood	cells.	at	
low shear rates, red blood cells form aggre-
gates where they stack one upon another, 
somewhat like a cylindrical pile of coins. 
These “stacks” of red blood cells are known 

Figure 8.2: Cross sections of a small artery (a) 
and a very large artery (b) showing the stress 
distribution within the artery.
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as	 “rouleaux”	 (Figure	 8.5).	when	 the	 shear	
rate increases, these aggregates of blood cells 
are broken down and the blood viscosity 
decreases.	 For	 high	 shear	 rates,	 the	 blood	
cells tend to become elongated and line up 
with the flow of the liquid. This also tends to 
decrease the viscosity of the blood.

Given that the viscosity of blood 
increases with decreasing shear, one would 

think that the viscosity of blood within the 
body should increase as blood travels from 
the arteries through the arterioles and into 
the capillaries. This is because the shear 
rate and velocity of the blood decreases as 
the blood travels from the arteries through 
to the capillaries. The viscosity of blood, 
however, may be approximately con-
stant throughout much of the body. This 

Figure 8.4: Blood viscosity as a function of shear rate for 0% and 45% hematocrit.5

Figure 8.3: Elements of fluid slide past each other and generate a frictional shear stress.
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implies that the viscosity of blood is approx-
imately constant throughout the body. 
Understanding these properties affects the 
thinking of shear stress between blood and 

effect arises due to separate physical flow  
phenomena:

First,	the	viscosity	of	blood	is	dependent	
on the hematocrit. If the hematocrit decreases 
then	the	blood	viscosity	decreases.	For	exam-
ple	 in	 Figure	 8.4	 we	 show	 the	 viscosity	 of	
blood as a function of shear rate for 45% and 
0%	hematocrit.	For	0%	hematocrit	line	the	
viscosity of the blood is constant and has a 
value	of	approximately	1.6	cP.	

Second,	the	hematocrit	level	is	dependent	
on	the	diameter	of	 the	blood	vessel.	as	 the	
blood vessel decreases in diameter, the hema-
tocrit	 level	 also	decreases	 (Figure	8.6).	this	
effect occurs because the blood cells tend to 
move away from the vessel walls and travel 
where the flow velocity is a maximum. This 
behaviour	 is	 known	 as	 the	 Fahraeus	 effect	
and it has been shown to occur in tubes 
with a diameter as small as 29 μm. 6,7 Given 
that a blood cell has a diameter of around 
8	μm	it	 is	possible	 that	 the	Fahraeus	effect	
may occur in tubes with diameters less than  
29 μm.

The combination of these two effects Figure 8.5: Rouleaux blood cell network.

Figure 8.6: Hematocrit as a function of tube diameter. The initial hematocrit value for each line is 
shown in the inset box8.
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vessel walls – or more relevantly between 
blood and atheroma.

PoiSeuiLLe	FLow	

Suppose	 that	 you	 have	 a	 Newtonian	 fluid	
flowing, in a steady, non-pulsatile manner, 
down a cylindrical, non-elastic pipe of length 
L and radius a. If the pipe is long enough, the 
flow will develop a parabolic velocity profile, 
which	 is	 generally	 called	 a	 Poiseuille	 flow	
profile	(Figure	8.7).	the	flow	takes	its	name	
from	Jean	Louis	Poiseuille,	a	physician	with	
training in physics and mathematics, who 
first	described	the	flow	structure	in	1846.

The volumetric flow rate (q)	 for	 Poi-
seuille flow, i.e., the volume of fluid flowing 
along the tube per unit time is given by the 
formula 

q  ,
(p

1
 – p

2
)π a4

8µ L
 (6)

where p
1
 – p

2
 is the pressure difference 

between the two ends of the tube and µ is 
the viscosity of the fluid.

The physics of the flow is nicely described 
by this equation. That is, flow is driven by the 
pressure gradient in the tube or conversely, 

when there is flow in a tube then you must 
have a pressure gradient to drive the flow. 

Prostheses	 are	 subject	 to	 the	 intermit-
tent forces of pulsation and flow. The large 
elastic vessels are capacitors and provide on-
flow in diastole and the muscular peripheral  
vessels maintain pressure by altering resist-
ance mediated via physiological feedback. 
Current prostheses are not able to do this 
and have to withstand the forces.

Note	also	the	parameter	of	 length.	Flow	
is	 therefore	 also	 related	 to	 length.	 Patency,	
such as in femoro-popliteal synthetic con-
duits, maybe as much, if not more, related to 
length of conduit as it is to angulation across 
bend points depending on the haematologi-
cal factors depositing thrombus. This may 
also partly explain better patency in shorter 
bypass grafts. 

BeRNouLLi’S	eQuatioN	

Johann	Bernoulli	(1667–1748)	was	a	professor	
in	 Basel	 and	 taught	 physics,	 anatomy	 and	
physiology and his understanding lies at the 
heart of vascular physics and relates pressure 
to	motion	and	energy.	For	a	fluid	that	has	no	
viscosity, one can write

Figure 8.7: Parabolic velocity profile for fully developed Poiseuille flow.
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p  ρ   ρ gy  constant of the flow,
u2

2
 (7)

where p is the pressure, ρ the mass density 
of the liquid, u the speed of the fluid, g the 
gravitational acceleration, and y the height. 
in	other	words,	the	Bernoulli	equation	states	
that the pressure plus the kinetic energy  
per unit volume, ρ2

u2
, plus the potential  

energy per unit volume, ρgy, is a constant  
at	 any	 point	 along	 the	 blood	 vessel.	 So	
for a constant height, an increase in flow  
speed implies a decrease in pressure, while 
for constant flow speed, an increase in height 
implies a decrease in pressure.

it	 should	 be	 understood	 that	 eq.	 (7)	 is	
an approximation, as it ignores the loss of 
energy due to shearing friction between the 
flowing blood and the walls of the artery. 
even	 so,	 it	 does	 provide	 us	 with	 an	 intui-
tive understanding of the physics of the arte-
rial/venous	 system.	 For	 example,	 suppose	
we wish to measure the blood pressure of a  
person. Typically one places a sleeve or an 
external cuff around the upper arm. The 
upper arm is chosen because it is at approxi-
mately the same level of the heart and so the 
pressure will not be affected by any differ-
ence in height. To measure the systolic pres-
sure, the cuff pressure is increased until all 
blood	flow	ceases	from	eq.	(7)	we	know	that	 
this “cut-off” pressure is the maximum pres-
sure in the artery. The pressure in the exter-
nal cuff is then decreased until the flow is a 
maximum. We then know that the pressure 
will be a minimum and this is the diastolic 
pressure in the artery. 

In practice, the arterial system has two 
sources of potential energy to drive the blood 
forward. The first is blood pressure and this 
is transformed into kinetic energy of flow 
during the period between systole and dias-
tole, and the second is stored energy in the 
wall of the artery – its capacitance. Con-
sider what might happen when the kinetic 

energy meets a resistive obstacle – some 
energy is dissipated as heat as with circuit 
theory and some is stored for use in dias-
tole for onward flow in the period of heart  
filling by the elasticity of the great vessels 
acting	as	a	capacitor.	however,	some	energy	
is used up as a water hammer. The repetitive 
alterations in forward pressure and resistive 
back-pressure with pulsatile flow in a physi-
ologically responding, pressurized system 
sets up the potential for the water hammer. 
The injury and healing cycle effect of these 
water hammers on atherogenesis and aneu-
rysm behaviour at stress points has yet to be 
fully determined.

YouNG’S	MoDuLuS	aND	
PuLSatiLe	FLow

Blood	flows	through	the	arteries	in	a	pulsatile	
fashion.	 arteries	 are	 semi-elastic	 tubes	 and	
the arteries expand and contract as the pulse 
of blood flows along the artery. The speed, c,  
at which blood flows along an artery is 
determined by the speed that a pulse of fluid 
can travel along an elastic tube. This speed is 
given,	approximately,	by	the	Moen-Korteweg	
formula:

c ≈         , Eh
ρ d

	(8)

where E	 is	Young’s	modulus	 for	 the	wall	of	
the artery, h is the thickness of the artery,  
d is the inner diameter of the artery and ρ is 
the	density	of	blood.	a	schematic	depiction	
of how a pulsatile wave propagates along an 
artery	is	given	in	Figure	8.8.	

as	can	be	seen	from	eq.	(8),	the	speed	at	
which blood travels along an artery is par-
tially	dependent	on	the	Young’s	Modulus	of	
the arterial wall. To illustrate the definition 
of	Young’s	Modulus	 it	 is	useful	 to	 consider	
Figure	8.9,	where	a	block	of	material	is	being	
stretched due to an applied force on one end 
of the block. 
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Figure 8.8: An exaggerated, schematic view of blood flow in an artery.

Figure 8.9: A block of material with a length, L, and side area A is subject to a force F. The applied 
force stretches the block a distance ΔL.

The block has a natural length denoted 
by L, when a force F is applied to one side 
of the block then the length of the block 
increases by Δ L. This change in length is 
known as a strain, ε, and it is defined by the 
equation

ε   .∆L
L

 (9)

The stress that the force applies to the 
block of material has the definition

σ  .F
A

 (10)

Young’s	Modulus	 is	defined	as	 the	 stress	
over the strain, i.e., 

E  .
σ
ε

 (11)

Young’s	 modulus	 is	 a	 measure	 of	 how	
easy it is to stretch and compress a material. 
thomas	Young	(1773	–	1829)	was	a	medical	
physician who made significant contributions 
to	fields	of	Physics	(through	his	experiments	
which demonstrated the wave-like nature of 
light), linguistics (via his identification of the 
Rosetta	Stone),	medicine	(with	his	studies	of	
blood flow), and structural mechanics (e.g., 
Young’s	 Modulus).	 he	 was	 well	 aware	 of	
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the elastic nature of arteries, but, somewhat 
ironically,	does	not	appear	to	have	used	Young’s	
Modulus	to	describe	their	properties.	

One consequence of aging is increasing 
stiffness in the arteries. This means that the 
Young’s	modulus	increases	and	this,	as	a	con-
sequence	 of	 eq.	 (8),	 increases	 the	 speed	 of	
pulsatile flow within the arterial system. 

MaSS	CoNVeRSioN

in	Figure	8.10	we	view	a	schematic	depiction	
of an artery that is changing in shape as one 
travels along the artery. The blood flows in at 
one end with a speed u

1
. The area at the inlet 

of the artery is given by A
1
. In its simplest 

form, the mass conservation equation 
provides us with the relationship between 
the quantities at the proximal and distal ends 
of the artery: 

u
1
A

1
  u

2 
A

2 
,   (12)

here u
2
 and A

2
 are the outlet flow speed and 

area,	respectively.	in	plain	english,	eq.	(12)	
is another way of saying “what goes in must 
come out”.

we	can	see	from	eq.	(12)	that	if	an	artery	
becomes narrower, i.e., A

2
 becomes smaller, 

then the flow speed, u
2
, increases. This occurs 

because the mass flow is conserved and so 
if the tube becomes narrower then the flow 
rate has to increase.

Some	 diseased	 blood	 vessels	 develop	 a	
constriction	 or	 stenosis	 (Figure	 8.11).	this	
narrowing of the blood vessel wall may be 
caused by atherosclerosis or neo-intimal 
hyperplasia after an intervention. If we 
assume steady-state, Newtonian blood flow 
and ignore gravity then the pressure in a 
compromised blood vessel with a stenosis 
can	 be	 calculated	 by	 combining	 Bernoulli’s	
equation (equation 7) and the mass conser-
vation (equation 12) to obtain

p
1
 

 ρ v
1
2

2

 ρ
2

 p
2 
                , 

 v
1
A

1

A
2

( )
2

 (13)

1
 
            . p

2 
 p

1
 

 ρ v
1
2

2

A
1

A
2

( )
2

( )  (14)

Since	a
2
	<	a

1
 the energy last term of equa-

tion 14 becomes negative so then the blood Figure 8.10: A change in the diameter of an 
artery leads to a change in the blood flow speed.

Figure 8.11: Blood vessel with a stenosis.
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pressure is lower at the stenosed section of the 
blood vessel (the constriction) to ensure that 
the sum of the pressure and energy at each 
point along the blood vessel remains equal. 
The lower pressure at the stenosis makes the 
blood vessel with a stenosis more prone to 
collapse if an external pressure were applied 
to	 the	blood	 vessel.	 Stents	 or	drug	 -eluting	
stents may be inserted in an artery that has 
a stenosis to keep the artery open after the 
blockage has been cleared using angioplasty. 
Mass	conservation	shows	that	the	velocity	is	
higher at the stenosis due to a smaller area at 
the stenosis.

ReYNoLD’S	NuMBeR

the	Reynolds’	number	(Re)	is	a	dimensionless	
number, which provides an indication of how 
blood	is	flowing	in	an	artery.	the	Reynolds’	
number is given by:

Re
 
           ,

UDρ
µ

 (15)

where U is the speed of the flow, D is the 
diameter of the blood vessel, ρ the blood 
density and μ	 the	 blood	 viscosity.	 For	 an	
artery, the flow tends to change from lami-
nar	 to	 turbulent	 at	 a	 Reynolds’	 number	 of	
approximately 2000. This number should be 
treated as only a representative value, since  
the transition from laminar to turbulent flow 
may	occur	at	higher	Reynolds’	numbers.

To see a representative peak value of  
Reynolds’	number,	we	consider	an	abdomi-
nal aorta of diameter, D = 2.5 cm = 0.025 m,  
peak blood flow speed U	=	60	cm/s	=	0.6	m/s,	 
blood density ρ	=	1	gram/cc	=	1000	kg/m3 
and blood viscosity μ	=	0.0036	Pa	s.	these	
values give Re ≈	4,200.	So,	in	principle,	it	is	
possible for turbulent flow to occur in the 
aorta during the systolic phase.

Fluid	 flowing	 in	 a	 laminar	 fashion	 is	
dominated by the viscosity and at a high 
Reynolds’	 number	 by	 its	 inertia.	 a	 bruit	 is	
audible chaotic flow at high velocity with 

energy transformed to noise – inefficient 
flow that maybe disruptive as in a carotid 
stenosis – and blood needs to be able to flow 
fast in order to deliver its load at a cardiac 
output	of	up	to	30L/min	in	an	athlete.	

Turbulent flow is less efficient relative to 
laminar flow. This means that more energy 
or a greater pressure drop is required to drive  
turbulent flow compared to laminar flow. 
a	 quantitative	 way	 of	 measuring	 this	 inef-
ficiency is given by the formula for energy or 
“head” loss for flow along a pipe

h
L 
 f           ,

L
D

U 2

2g
 (16)

where f  is the loss coefficient, L the length 
of the artery or appropriate subsection of an 
artery and g the acceleration due to gravity. 
For	laminar	flow, 

f
lam

        ,
64
Re

 (17)

while for turbulent flow

f
lturb 

∼            .0.316
Re1/4

 (18)

One can show that f
turb

 > f
lam

 when  
Re > 1200, which implies that turbulence 
consumes more energy relative to laminar 
flow. This result is represented schematically 
in	 Figure	 8.12,	 where	 we	 have	 plotted	 the	
ratio f

turb
/f

lam
	as	a	function	of	Re.	here	we	see	

that	at	a	Reynolds’	number	of	around	2000,	 
turbulent flow loses 1.5 times more energy 
relative	 to	 laminar	 flow.	 as	 Re	 approaches	
5000 turbulent flow tends to lose 3 times as 
much energy as laminar flow.

It is interesting to speculate that the  
particulate nature of blood and plasma com-
position may act to discourage the forma-
tion	of	 turbulent	flow.	each	 red	 cell,	being	
bi-concave, could change the local inter-
actions between the cells and the blood 
plasma so that the flow tends to remain 
laminar. The shape of the red cell then may 
enhance the efficiency of blood flow, in addi-
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tion to increasing surface area for oxygen  
delivery. 

aRteRiaL	DiSSeCtioN,	
CoLLateRaL	CiRCuLatioN	
aND	CoMPetiNG	FLowS	

To this point we have essentially discussed 
flow	in	series.	Much	of	the	normal	flow	and	 
some pathological flow occurs in parallel. 
For	 example,	 the	 collateral	 circulation	 in	
each segment of the body; the profunda 
system in the thigh, the geniculate system 
around the knee and the tibial systems in 
the	leg.	another	good	example	is	the	carotid	
and vertebral systems combining to form the 
cerebral circulation. In parallel circulation, 
the pressure at the separation of the two 
systems is theoretically the same for each, and 
the pressure at the re-union is also the same 
for each. The proportion of ongoing flow 
from the two systems is determined by the 
resistance of each system. These two therefore 
compete for the proportion of on-flow. This 
works well to direct or redirect the flow to the 
target tissues. The body may select priorities 
for flow, for example, the brain and heart in 
shock or the muscles during exercise. The 
branches of the great vessels and arteries to 

the tissues are resistance vessels and they have 
muscular walls for this purpose. The formula 
for resistors in parallel circuits is

            …�     ,
1

R
total

1
R

1

1
R

2

1
R

n

 (19)

where n is the number of parallel circuits.
These circuits also provide alternative 

channels should the dynamics change due to 
injury or disease. Not all parallel circuits 
are beneficial. Detrimental competing flows 
may occur with artificially created channels, 
for example, aorto-bifemoral bypass, when 
one iliac system is normal and the other 
occluded. The competing flows on the  
normal side predispose for either that limb 
of the graft or part of the iliac system on 
that	side	to	occlude.	Similarly,	with	femoro- 
popliteal bypass after long-standing super-
ficial femoral artery occlusion when the 
profunda collateral flow has been well 
developed.

In aortic dissection, the outflow from the 
false lumen is met with greater resistance than 
the outflow from the true lumen. The flows 
compete where the intima has been torn off 
the origin of a branch vessel which therefore 
comes off the false lumen and leaves a hole 
in the membrane at that point. The pressure 

Figure 8.12: Plot of the ratio of turbulent to laminar energy loss coefficients.
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is higher in the false lumen at any time in the 
cardiac cycle other than peak systole.

Figure	 8.13	 shows	 the	 trace	 from	 true	
and false lumens of a dissected aorta. Note 
the systolic pressure is same in each lumen 
at	 138	 mmhg.	 the	 diastolic	 is	 higher	 in	 
the	false	lumen	at	93	mmhg	compared	to	the	 
diastolic	 in	 the	 true	 lumen	 of	 82	 mmhg.	 
The area under the curve is the same and  
so the pulse wave in the false lumen is wider. 
The mean pressure in the false lumen is 
higher	 at	 109	 mmhg	 than	 the	 true	 lumen	
where	the	mean	is	91	mmhg.

This means that the false lumen is almost 
always the larger of the two and is more 
likely	 to	 dilate.	 Flow	 of	 contrast	 injected	
into the true lumen is not seen to flow out 
to the false lumen through the holes in the 
membrane unless the pressure of the injec-
tion and the pressure of the lumen together 
exceed the pressure of the false lumen. The 
membrane that is the remnant of the intima 
oscillates as the pressure ratio between the 
true and false lumen changes during the  
cardiac cycle. This dynamic also applies for 
a Type 1 endoleak into the residual sac of an 
aortic aneurysm treated by an endovascular 
graft.

SheaR	StReSS	aND	PReSSuRe

all	 vascular	 clinicians	 are	 familiar	 with	
the ultimate shearing force injury of high 
velocity impact when the mobile arch of the 
aorta and heart continue to move forward 
while the descending aorta, held by the 
intercostals and posterior mediastinum, is 
held to the vertebral bodies. What of subtle 
persistent long-term shear stresses and the 
relationship with the greatest risk factor 
for arterial disease – age? There are known 
common sites for occlusive atheromatous 
plaques e.g. the carotid bifurcation, aortic 
bifurcation, origins of branches of the aorta 
and coronary arteries and shear stress points 
such as the adductor canal.

atheroma	is	an	arterial	lesion.	occlusive	
and dilating diseases of the arteries progres-
sively occur with ageing, and obviously age 
is the greatest risk factor. It is not seen in 
children and only seen in veins subject to 
long term pulsatile pressure when they are 
said	to	be	“arterialised”.	For	example,	when	
a vein is used for an arterial bypass or for 
a	dialysis	fistula.	Pressure	and	pulsatility	are	
the	 forces	 involved.	 Persistent	 raised	 blood	
pressure above the norm causes progressive 

Figure 8.13: Pressure readings from the true and false lumens of a dissected abdominal aorta (courtesy 
of Dr John Anderson).
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wall damage. With age there is degeneration 
of the wall of the artery and loss of compli-
ance.	Pulse	pressure	 and	peak	 systolic	pres-
sures rise because of the loss of compliance. 
Peaks	 of	 pressure	 occur	 with	 exertion	 and	
acute	damage	may	occur	at	such	times.	age	
will eventually affect all, but some are more 
genetically predisposed to arterial lesions and 
other risk factors such as poor diet and smok-
ing accelerate any genetic predisposition.

Shear	stress	on	an	arterial	wall,	τ
w
, due to 

Poiseuille	fluid	flow	is	given	by	the	formula

τ
w
  ,

4µ q
π a3

 (20)

where a is the radius of the artery and q is  
the volume flow rate of blood through the 
artery.	 From	 this	 formula	 it	 can	 be	 seen	
that shear stress increases with the increase 
of blood flow through the artery and tends 
to increase as the artery becomes smaller in 
diameter – provided that the volume flow 
rate and the viscosity are approximately 
constant.

atherosclerotic	 lesions	 form	 at	 specific	
areas where low and oscillatory endothelial 
shear	 stress	occur.	high	risk	plaques	have	a	
large lipid core, thin and inflamed fibrous 
cap and excessive expansive remodelling9. 
Wall shear stress may rupture the established 
plaque.	 Plaque	 rupture	 and	 intraplaque	
haemorrhage are recognized causes of cardiac 
events. Computational modelling of carotid 
bifurcations with atherosclerotic plaques  
that had patient-specific geometries obtained 
from	 Magnetic	 Resonance	 imaging	 (MRi)	
scans and modelled the fluid-structure 
interactions have shown that stresses in the 
fibrous cap and around the plaque shoulders 
affect plaque rupture risk, with higher stress 
and plaque rupture risk for thinner caps.10-13

FoRCeS	oN	GRaFt	SYSteMS

The performance of endoluminal grafts  
(eLG)	 was	 found	 to	 be	 different	 to	 open	

repair with a sewn replacement of the 
artery because of unsuspected influences, as 
mentioned above, that relate to sustained 
physical forces.1 The openly-sewn prosthesis 
binds the wall of the artery to the prosthesis 
with a transmural suture. The artery may 
expand above or below the prosthesis. 
however,	 at	 the	 point	 of	 attachment	 the	
artery wall is held to the fixed diameter by 
the through-wall suture for as long as the 
suture	 holds.	 eLG’s	 to	 date	 do	 not	 bind	 
the adventitia to the prosthesis – they merely 
attach.	 the	 eLG	 must	 continue	 to	 act	 to	
bridge the gap between normal artery above 
and	 below	 until,	 if	 ever,	 the	 aneurysm’s	
cavity shrinks right down. In open surgery, 
the suture is binding and the tissues around 
supportive. The diameters of the grafts used 
for the same abdominal aortic aneurysm 
(aaa)	differ	markedly	between	the	open	and	
eLG	methods.	the	common	diameters	used	
for tube replacement surgically of infrarenal 
aaa	 is	 18	 or	 20	 mm.	 the	 commonest	
diameter for an endoluminal graft is 26 or  
28	mm	and	30+	mm	is	not	uncommon.	why	
such a discrepancy when the surgeon judges 
the diameter to suitable fit? This discrepancy 
is due to the different types of attachment 
of an open graft and an endoluminal graft. 
With the former, there are sutures through 
the graft and the full thickness of the aortic 
wall. This means that the aortic diameter 
at that point is permanently fixed to the 
diameter of the graft in its pressurised state. 
The diameter of a crimped vascular graft is, 
by definition, the minimum internal distance 
between the crimps in the non-pressurised 
state. It is increased by approximately 10% 
when	pressurized.	with	the	eLG,	a	residual	
radial force is required for seal and the 
attachment may or may not be enhanced by 
latching barbs. The oversize allowance must 
accommodate elasticity and compliance while 
maintaining the seal between pulsations for 
the whole of the length of the sealing zone. 
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These latching barbs sometimes cross the 
renal arteries but have been shown to have a 
minor effect of 1 % on the renal artery flow 
rate for 3 mm diameter artery.14

With an endoluminal graft the device 
must bridge a gap for an indeterminate time 
before the body reabsorbs the contents of the 
aneurysm and encases the graft in foreign 
body fibrous tissue support. Therefore the 
long term function and durability demands 
are different and more demanding.1 Under-
standing the forces involved is basic to 
design and use of new technology and the 
weaknesses that lead to aneurysmal disease 
provides a challenge.1,15

a	mistaken	clinical	impression	is	that	the	
forces	 on	 a	 thoracic	 eLG	 should	 be	 greater	
than	those	on	an	abdominal	eLG.	the	flow	
and diameter of the thoracic aorta are greater 
and the haemodynamic forces potentially 
much	 larger.	however,	because	 the	diameter	
of the graft changes little, if at all, the down-
ward	displacement	force	in	the	thoracic	eLG	
is small as the resistance in the graft is low 
– except on the aortic arch. The resistance of 
any graft that extends into the iliac vessels is 
much greater because of the significant change 
in diameter and high resistance within the 
graft acting like a windsock or sea anchor.15 
an	aorto	uni-iliac	device	affords	greater	resist-
ance than a bifurcated graft and detachment 
at the neck and migration is a common prob-
lem due to high displacement forces. In con-
trast with the thoracic aorta there is little drag 
because there is little or no change in diame-
ter. In contrast, there is little drag on a graft in 
the thoracic aorta because there is little or no 
change in diameter along the graft. The force 
applied to the graft is on the curve and cen-
trifugal	forces	apply.	Since	every	action	has	an	
equal	 and	 opposite	 reaction	 (Newton’s	 third	
law), one must ask where is the reaction. The 
reaction is to pull the graft out from the top 
and the bottom almost equally. When endo-
luminal grafts were first used in the thorax, 

unexpected upward migration of the distal 
end emerged as the problem, especially when 
there	was	a	significant	curve	on	the	graft.	For	
the	 same	 reason,	 this	 ‘lift	 out’	 may	 also	 be	
seen from the iliacs when the graft fixation is 
weak	because	of	ectasia	and/or	short	length	of	
distal	 attachment.	type	1B	 endoleak	 can	be	
more	 dangerous	 than	type	 1a	 if	 this	 factor	
is ignored.

an	important	issue	in	vascular	interven-
tion is the durability of endoluminal grafts. 
Such	 grafts	 are	 often	used	 to	protect	 aneu-
rysms from the effects of arterial pressure. 
Unfortunately, hemodynamic forces can dis-
place a graft and thereby, potentially, inter-
rupt the seal between the graft and the neck 
of the aneurysm. It is important, therefore to 
have an understanding of the possible forces 
that may be exerted on a graft.

To illustrate the steps used in determin-
ing the forces on a graft system, via analytic 
equations, we consider the steady flow of 
blood	 through	 a	 bent	 pipe	 (Figure	 8.14).	
In this figure, the proximal inlet entrance is 
labelled by 1 and the distal exit by 2. D

1
, 

A
1
 and D

2
, A

2
 are the diameters and cross-

sectional areas, respectively, of the graft at 
the points 1 and 2. The vector normals of 
the cross-sectional areas are, respectively, at 
angles of θ

1
 and θ 2	to	the	vertical.	Similarly	

p and v refer to the pressures and velocities  
at these points. R

x
 and R

y
 are the x and y  

components of the restoring force. The exter-
nal pressure on the graft system is denoted 
by p

ex
.

In our analysis, we assume steady-state,  
i.e., non-pulsatile, flow. We do this as it gives 
us a basic idea of how the system is behaving.

The first equation is the steady-state mass 
conservation equation, which we rewrite in 
the form 

v
1
A

1
  v

2
A

2
.  (21)

One should note that v
 1 

and v
 2
 are aver-

age flow speeds, where the average is taken 
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over the areas of A
1
 and A

2
 respectively.

The next analysis tool at our disposal is 
the momentum  conservation equation, 
which can be expressed in the form 
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and
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where in these formulae, we have ignored the 
weight of the graft and the weight of blood 
in the graft. These terms are easily included 
into the equations, if required. 

energy	 is	 the	 final	 conserved	 quantity	
that we can use in our analysis. The energy 
conservation equation has the form:

p
1

γ
α

1
v

2

2g  z
1
 

p
2

γ
α

2
v

2
2

2g  z
2
  h

L
 ,  (24)

where g is the gravitational acceleration,  
γ = ρg is the weight density of blood, z

1
 

and z
2
 are the vertical heights of the proxi-

mal and distal ends of the graft, respectively, 
and h

L
	is	the	‘head	loss’	in	the	pipe,	i.e., the 

amount of pressure or energy that is lost due 
to frictional viscous effects as the fluid travels 
through	the	pipe.	head	loss	is	usually	given	
by the equation

h
L
  K

L          
,

v
2
2

2g
 (25)

where K
L
 is a constant, the value of which is 

usually dependent on the shape, length and 
diameter of the pipe. The coefficients α

1
 and 

α
2
 are kinetic energy correction factors that 

have different values depending on the type 
of	flow.	For	example,	for	uniform	flow	α = 1, 
turbulent flow has α ≈ 1, and laminar flow 
gives α = 2.

By	 combining	 eqs	 (21),	 (24)	 and	 (25),	
one obtains

 γv
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2g (p
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1
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2
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L
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1
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 (26)

So,	by	using	eqs	(26)	and	(21),	we	can	
express p

2
 and v

2
 in terms of quantities at the 

entrance of the graft. This then allows us to 
compute the restraining forces on the graft 
system	by	then	using	eqs	(22)	and	(23).

Figure 8.14: The characteristic velocity, pressure, area and force vectors required to compute the 
restraining forces on a bent, single-tube graft system.
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Case 1 – The cylindrical graft

For	this	case,	the	inlet	and	the	outlet	areas	are	
the	same,	so,	by	eq.	(21),	the	inlet	and	outlet	
flow speeds are also equal. The angles θ

1
 and 

θ
2
 are equal and have a value of 90°. The 

inlet and outlet pressures are not equal due 
to the frictional, shear interaction between 
the blood and the graft (i.e., the head loss 
as	 given	by	eq.	 (25)).	this	 frictional	 inter-
action causes the outlet pressure, p

2
, to be 

less than the inlet pressure, p
1
. This is called 

a pressure drop. 
From	 all	 of	 this	 information,	 one	 can	

write down the restraint forces on the graft. 
So,	from	eqs	(22)	and	(23):

R
y
  0,  (27)

 
 

i.e., there are no vertical forces generated 
by blood flowing through a horizontal graft 
and 

R
x
  (p

2
  p

1
)A

1 
,  (28)

where we have set the external pressure to 
zero. In this case, the horizontal force on the 
graft is quite small, because p

1
 will only be a 

little larger than p
2
. One can conclude from 

this analysis that straight, cylindrical grafts 
only feel a relatively small drag force in the 
direction of the flow.

Case 2 – The windsock graft

Suppose	now	we	consider	a	graft	in	the	shape	
of	a	windsock,	such	as	in	Figure	8.16.

For	this	case,	the	inlet	area	is	now	larger	
than	and	the	outlet	area,	so,	by	eq.	(21),	the	
outlet flow speed is greater than the inlet 
flow speed as given by

 A
1

A
2

)(v
2
          v

1
 (29)

as	in	the	previous	case,	the	angles	θ
1
 and 

θ
2
 are equal and have a value of 90° and the 

inlet and outlet pressures are not equal due 
to the frictional, shear interaction between 
the blood and the graft. 

The restraint forces on the graft are from 
eqs	(22)	and	(23):

R
x
  p

2
A

2
  p

1
A

1
  pv

2
2A

2
  pv

1
2A

1
,  (30)

and

R
y
  0 .  (31)

When you put in the appropriate num-
bers	into	eq.	(30),	it	is	found	that	the	domi-
nant term in this equation is the p

1
A

1
 term. 

Many	 endoluminal	 grafts	 have	 this	 ‘wind	
sock’	 shape	with	a	distal	 exit	 area,	which	 is	
smaller than the proximal, inlet area. This 
shape has a much larger drag force than for a 
cylindrical graft.

Figure 8.15: Cylindrical graft.
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Case 3 – The curved graft

as	with	the	cylindrical	graft,	the	inlet	and	the	
outlet	areas	are	the	same,	so,	by	eq.	(21),	the	
inlet and outlet flow speeds are also equal. 
Due to the symmetry of the situation, the 
vertical restraint force is zero, the horizontal 
restraint force is given by

R
x
  p

2
A

2
  p

1
A

1
  pv

2
2A

2
  pv

1
2A

1 
.  (32)

So,	 now	 both	 the	 pressure	 and	 veloc-
ity components add together to produce a 
greater total force on the graft. This result 
suggests that a curved graft may be subject 
to greater forces than a wind-sock shaped 
graft. 

Case 4 – The symmetric bifurcated 
graft

Suppose	that	we	consider	a	symmetric	bifur-
cated	 graft,	 such	 as	 shown	 in	 Figure	 8.18,	
where the two outlet distal legs of the graft 
are at an angle α to the horizontal, the two 
distal ends are equal and gravity is ignored. 
The proximal end of the graft is labelled by 
the number 1, the symmetric distal ends by 2 
and	3.	By	satisfying	momentum	con	versation	
the horizontal restraint force is given by:

R
x
  p

1
A

1
  2p

2
A

2 
cos   pv

1
2A

1
  2pv

2
2A

2 
cos

 
.

 
(33)

The more general, non-symmetric case 
with gravity is described elsewhere. 15

Figure 8.16: An endoluminal graft in the shape of a wind-sock.

Figure 8.17: Curved graft.
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We also know to satisfy mass conversa-
tion that the flow in has to equal the sum of 
the outflows

v
1
A

1
  v

2
A

2
  v

3
A

3 
,  (34)

and since it is a symmetric bifurcated graft 
then

v
1
A

1
  2

 
v

2
A

2 
.  (35)

By	 applying	 Bernoulli’s	 equation	 7	 and	
mass conversation equation 35 then p

2
 and 

ν
2
 can be eliminated from equation 33.
This equation shows that the horizon-

tal restraint force is strongly dependent on 
inlet area, pressure and on the bifurcation 
angle	(especially	>	15°).	But	the	blood	inlet	
velocity or flow rate has negligible effect on 
the horizontal restraint force.16-18 Naturally, 
a steady-state assumption is questionable, 
since pulsatile flow occurs in the human 
body.	however,	it	was	shown	experimentally	
that a steady-state analytical model can be 
used, with variable pressure and flow rate 
inputs, to predict forces on a symmetric, 
bifurcated graft in pulsatile flow with reason-
able approximation within design limits.17-18 

This steady-state analytical force model is 
now used in the design of grafts.

CoMPutatioNaL	MoDeLLiNG

Computational	 fluid	 dynamics	 (CFD)	 and	
finite element modeling can assist in our 
understanding of vascular haemodynamics. 
CFD	 uses	 numerical	 methods	 to	 discretize	 
and mesh the geometry and algorithms 
to solve the equations of motion (for 
example,	 the	 Navier-Stokes	 equation)	
and other relevant equations. In the last 
several years with advances in computing 
the computational modeling capability has  
greatly improved. It is now possible to 
incorporate patient-specific geometry from 
MRi,	 Ct	 or	 magnetic	 resonance	 angio-
graphy	 (MRa)	 data.	 the	 computational	
models also now include fluid-structure 
interactions (fluid flow and wall deformation 
interaction), pulsatile flow and non- 
Newtonian	flow.	Some	computational	model-
ling of vascular haemodynamic systems  
include	 aaa	 grafts,19-22 fluid-structure 
interactions with cere bral aneurysms,23-25 
patient-specific cerebral aneurysms with  
coils,26-28 and patient-specific circle of  

Figure 8.18: Symmetric bifurcated graft.
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Willis.29-33	For	example,	Li	and	Kleinstreuer19 
modelled blood flow and structure inter-
actions	 in	 a	aaa	with	 and	without	 a	 graft	
where they incorporated fluid-structure 
interactions, flexible walls, pulsatile flow 
and non-Newtonian blood flow. They 
confirmed that the force on the graft is 
highly dependent on the diameter, blood 
pressure and bifurcation angle. They also 
showed	 significant	 reduction	 in	 aaa	
stress, displacement and pressure after graft 
placement	as	shown	in	Figure	8.19.

endoleaks	which	are	blood	flow	between	
graft	 and	 the	 aaa	 wall	 can	 also	 cause	 
problems	in	aaa	such	as	elevated	sac	pres-
sure and high stresses which may lead to rup-
ture.	Li	and	Kleinstreuer34 modelling analysis 
indicated the sac pressure caused by type II 
endoleaks (leakage via collateral arteries) 
depends on the inlet branch pressure; thus, 
type II endoleaks may increase sac pressure 

to near the systemic pressure levels, which 
could cause more clinical concern. Other 
studies have shown that intrasac pressure 
measurements and haemodynamic analysis 
of the graft-aortic wall interactions can be 
used to detect type II endoleaks.35,36

ReCeNt	DeVeLoPMeNtS	aND	
FutuRe	DiReCtioNS	

Mathematics,	 principles	 of	 physics	 and	
com putational modelling of vascular haemo-
dynamics have been useful in verifying 
or modifying intuitive engineering of 
endovascular stent grafts; and towards 
better understanding of failure modes of the 
cardiovascular	system	and	its	prostheses.	For	
example, based on vascular haemodynamics 
analysis relating a vascular geometric ratio 
to the likelihood of aneurysm rupture, 
plaque rupture and stent graft migration. 

Figure 8.19: Effect of graft placement on blood flow and AAA wall at peak systole pressure level 
(courtesy of Professor Clement Kleinstreuer).19



Mechanisms of Vascular Disease172

CFD	modelling	of	vascular	haemodynamics	
is currently being used in the design and 
evaluation of implanted medical devices such 
as grafts. It is still a complex process to create 
patient-specific computational models and 
difficult for clinicians to interpret the results. 
In the future, computational modelling 
of vascular haemodynamics may be used 
as a tool for patient-specific blood flow 
quantification relevant to clinical practice 
to assist intervention planning, decision-
making and optimization.

however,	 for	 computational	 model-
ling to be more easily translated to clinical 
relevance there needs to be more extensive 
comparisons of in vitro and in vivo clinical 
studies to validate the codes, with the uncer-
tainties quantified, so they can be used with 
confidence.	 Patient-specific	 geometries	 and	
measured flow distribution boundary condi-
tions should be included. There needs to be 
better models of arterial mechanical proper-
ties during each stage of a disease state (e.g. 
aneurysm formation), more accurate imag-
ing techniques that can provide better infor-
mation of the wall thicknesses, details on 
perivascular environment and much better 
coupling with vascular biology, mass trans-
port and cellular biophysics. With grafts now 
being used in high curvature areas it is more 
important to understand the forces required 
to keep the grafts in place to mitigate their 
migration.

The intersect of clinical arterial pathology, 
feedback systems in physiology and compu-
tational fluid dynamics leads us to potentially 
the most exciting time in advances for arterial 
disease ever. The vascular system is dynamic 
in its function, its response to demand, its 
injury and repair cycle and its aging. The 
arterial system is intricately designed so that 
each arterial division is specific for its func-
tion and the demands placed upon it for up  
to one hundred years. To the empirical,  
statistical, biochemical, genetic and molecular  

biology knowledge of the cardiovascular 
system must be added the central role of 
haemodynamic physics and the pathol-
ogy that results from the relentless forces of 
blood	 pressure	 and	 pulse	 wave.	 Modelling	
of arteries opens the door to much better 
understanding of why atheroma occurs at the 
known predictable sites such as the carotid 
bifurcation, the origins of branch vessels of 
the aorta and sites of stress for example the 
adductor canal.

CoNCLuSioN

Understanding the physics of the vascular 
system in health and disease will influence 
vascular management. This is a rich field for 
further	research.	Further	clues	to	atherogenesis	
may lie in the differences of the fluid dynamics 
and stresses applied to the arterial systems. 
Computational modelling will be of increasing 
importance, as the science evolves, to our 
understanding of vascular haemodynamics.
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