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18  •  Pathophysiology of Reperfusion Injury
Prue Cowled, robert Fitridge

discipline of Surgery, the university of Adelaide, the Queen elizabeth 
Hospital, woodville South, South Australia, Australia

introduCtion

ischaemia-reperfusion injury (iri) is 
defined as the paradoxical exacerbation of 
cellular dysfunction and death, following 
restoration of blood flow to previously 
ischaemic tissues. reestablishment of blood 
flow is essential to salvage ischaemic tissues. 
However reperfusion itself paradoxically 
causes further damage, threatening function 
and viability of the organ. iri occurs in a 
wide range of organs including the heart, 
lung, kidney, gut, skeletal muscle and brain 
and may involve not only the ischaemic 
organ itself but may also induce systemic 
damage to distant organs, potentially leading 
to multi-system organ failure. reperfusion 
injury is a multi-factorial process resulting 
in extensive tissue destruction. the aim of 
this review is to summarise these molecular 
and cellular mechanisms and thus provide an 
insight into possible windows for effective 
therapeutic intervention. 

iSCHAemiA

ATP and mitochondrial function

ischaemia occurs when the blood supply is 
less than the demand required for normal 
function, resulting in deficiencies in oxygen, 
glucose and other substances required for 

metabolism. derangements in metabolic 
function begin during this ischaemic 
phase. initially, glycogen breakdown by 
mitochondrial anaerobic glycolysis produces 
two molecules of adenosine triphosphate 
(AtP) along with lactic acid, resulting in 
a decrease in tissue pH, which then acts 
by negative feedback to inhibit further 
AtP production. (Figure 18.1) AtP 
is then sequentially broken down into 
adenosine diphosphate (AdP), adenosine 
monophosphate (AmP) and inosine mono-
phosphate (imP) and then further into 
adenosine, inosine, hypoxanthine and 
xanthine. (Figure 18.2 upper panel)

At the cellular level, a lack of AtP 
production causes AtP-dependent ionic 
pumps, including the na+/K+ and Ca2+ 
pumps, to fail and the transmembrane ionic 
gradients are lost. Consequently, cytosolic 
sodium content rises, drawing with it, a 
volume of water to attempt to maintain 
the osmotic equilibrium and resulting in 
hydroponic swelling of the cells. to maintain  
the ionic balance, potassium ions escape from 
the cell into the interstitium (reviewed in1). 
Calcium is released from the mitochondria 
into the cytoplasm and into extracellular 
spaces, thereby activating mitochondrial 
calcium-dependent cytosolic proteases 
includ ing calpain, which then converts the 
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cellular enzyme xanthine dehydrogenase to 
xanthine oxidase (Figure 18.2 upper panel). 
Phospholipases are also activated during 
ischaemia, degrading membrane lipids and 
increasing the levels of circulating fatty 
acids.

Gene expression during ischaemia

As well as metabolic derangements, ischaemia 
induces expression of a large number of 
genes, which play a major role in the tissue’s 
response to ischaemic damage. An rnA 
expression microarray analysis, using mouse 
soleus muscle rendered ischaemic by femoral 
ligation, found that expression of 962 genes 
was induced and 327 genes were repressed.2 
the activated genes were largely clustered 
into cytokine genes and mediators of 
inflammation and immune cell infiltration. 
the repressed genes were largely involved in 
energy production, including mitochondrial 
respiration and fatty acid oxidation. 

Hypoxia itself also activates a number 
of genes, particularly transcription factors, 
including activating protein-1 (AP-1), 
hypoxia-inducible factor-1 (HiF-1) and 
nuclear factor-kappab (nF-kb). HiF-1 then 
activates transcription of other genes such as 
vascular endothelial growth factor (VegF), 
erythropoietin and glucose transporter-1, 
which all play an important role in the cells’ 
adaptive responses to hypoxia (reviewed in3).  
expression of both HiF-1 and cyclo- 
oxygenase-2 (CoX-2) are also induced in 
the lungs of rats subjected to haemorrhagic 
shock. CoX-2 may promote the inflam-
matory response through the rapid and  
exaggerated production of nitric oxide  
and prostaglandins, contributing to organ 
damage.4 Activation of nF-kb occurs during 
both the ischaemic and reperfusion phases 
and will therefore be discussed below.

FigURE 18.1: Dysregulation of metabolic pathways 
during ischaemia
Anaerobic glycolysis during ischaemia results in 
negative feedback which inhibits ATP production, 
thereby inducing tissue acidosis, calcium influx and 
tissue oedema. 



Pathophysiology of Reperfusion Injury 333

rePerFuSion

Reactive oxygen species

table 18.1 illustrates the major reactive 
oxygen species (roS), which play a role in 
tissue damage during iri and the sources 
of generation of these species. reactive 
oxygen species have a destructive role in 
mediating tissue damage during iri. during 
ischaemia, the degradation of AtP produces 
hypoxanthine (Figure 18.2, upper panel). 

once the ischaemic tissue is reperfused, 
an influx of molecular oxygen catalyses 
xanthine oxidase to degrade hypoxanthine 
to uric acid and thereby liberating the highly 
reactive superoxide anion (o

2
-) (Figure 18.2, 

lower panel). Superoxide is subsequently 
converted to hydrogen peroxide (H

2
o

2
) and 

the hydroxyl radical (oH•) (Figure 18.2, 
lower panel). the major consequence of 
hydroxyl radical production is peroxidation 
of the lipid structures of cell membranes 

FigURE 18.2: Generation of reactive oxygen species during reperfusion
During ischaemia, ATP is degraded and xanthine dehydrogenase converted to xanthine oxidase. In the presence 
of fresh oxygenated blood, xanthine oxidase catalyses the conversion of hypoxathine to highly reactive and 
toxic superoxide anions with urea as a by-product. Superoxide then reacts with H+ to initiate the production 
of both hydrogen peroxide and the hydroxyl radical, which ultimately mediate lipid peroxidation and tissue 
damage.
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resulting in the production and systemic 
release of proinflammatory eicosanoids, 
disruption of cell permeability and ultimately 
cell death. during iri, roS also activate 
endothelial cells, elevating the activity of the 
transcription factor, nF-κb. once activated, 
the endothelial cell produces e-selectin, 
vascular cell adhesion molecule-1 (VCAm-1),  
intercellular adhesion molecule-1 (iCAm-1),  
endothelial-leukocyte adhesion molecule 
(elAm-1) plasminogen activator inhibitor-1 
(PAi-1), tissue factor and interleukin-8  
(il-8). these adhesion molecules contribute 
to important interactions between the 
neutrophil and the endothelium and will be 
discussed in more detail later.

Superoxide anions can be detected within 
ischaemic muscle and also in the venous 
effluent of reperfused limbs,5 suggesting an 
additional role for superoxide in inducing 

damage to distant organs during skeletal  
muscle reperfusion injury. Xanthine oxidase 
is located within a spectrum of cell types 
and tissues to varying degrees, indicating 
widespread distribution and differing 
susceptibility to oxidant-mediated iri. 
inhibition of xanthine oxidase activity, 
by administration of allopurinol prior 
to ischaemia, reduces the production of 
superoxide and hence reduces the severity of 
reperfusion injury in animal models using 
a range of tissues including skeletal muscle, 
brain and gut. results in humans are also 
promising. A systematic review6 provided 
evidence that allopurinol was effective in 
some studies in reducing the severity of post-
operative cardiac dysfunction and arrhythmias 
after coronary artery bypass grafting, although 
larger trials are needed. Studies in other 
clinical settings of iri remain limited. 

Eicosanoids

As discussed above, roS initiate lipid 
peroxidation of cellular membranes, releas-
ing arachidonic acid, the main substrate for 
the production of prostaglandins, throm-
boxanes and leukotrienes (Figure 18.2,  
lower panel). these derivatives of arachi-
donic acid are collectively known as the 
eicosanoids and play a major role in the 
pathophysiology of iri.

Prostaglandins, synthesised from 
arach i donic acid via the cyclo-oxygenase 
pathway, have a protective vasodilatory 
effect in iri. However, since prostaglandins 
are short-lived molecules, their rapid 
depletion subsequently leads to uninhibited 
vasoconstriction, reduced local blood flow 
and exacerbation of ischaemia. the potential 
of prostaglandins to ameliorate the degree of 
metabolic and tissue derangement following 
iri has been demonstrated in various 
tissues. in a placebo-controlled trial of 
human liver transplantation, administration 

TablE18.1: Reactive Oxygen species 
involved in IRI

Reactive oxygen species involved in IRI

Major ROS

Superoxide anion (O
2
-)

Hydrogen Peroxide (H
2
O

2
)

Hydroxyl radical (OH•)

Nitric Oxide (NO)

Peroxynitrite (ONOO-)

Minor ROS

Lipid hydroperoxide

Lipid peroxyl radical

Lipid alkoxyl radical

Thiol radical

Sources of ROS during IRI

Xanthine oxidase system

Activated neutrophils

Mitochondrial electron transport chain

Arachidonic acid metabolism

Auto-oxidation of catecholamines
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of prostacyclin was shown to improve 
postoperative graft function.7 Patients 
who received prostacyclin demonstrated 
better post-operative myocardial oxygen 
consumption after coronary artery bypass 
surgery8 and improved muscle blood flow 
following skeletal muscle iri.9 

Plasma thromboxane A
2, 

also synthesised 
from arachidonic acid,

 
increases within 

minutes following skeletal muscle iri, thus 
promoting vasoconstriction and platelet 
aggregation. these events coincide with 
a rapid rise in pulmonary artery pressure 
and a subsequent increase in pulmonary 
microvascular permeability,10 which correlates 
with sequestration of polymorphonuclear 
cells in the lungs. in animal models of lower 
limb iri, thromboxane synthase inhibitors 
and synthetic thromboxane A

2 
receptor 

antagonists prevented pulmonary leuko-
sequestration, thereby increasing blood 
flow to reperfused tissues and preserving 
tissue viability and function.11 together 
these studies suggest that administration 
of thromboxane A2 antagonists may offer 
therapeutic potential to improve limb salvage 
rates after surgery for acute ischaemia.

leukotrienes are also synthesised from 
arachidonic acid through the activation 
of 5-lipoxygenase and participate in the 
inflammatory cascade of iri. leukotrienes 
lead to local and systemic injury by 
their direct proinflammatory action on 
endothelial and smooth muscle cells and 
indirectly by their effects on neutrophils. 
the leukotrienes C

4
, d

4,
 and e

4
 modify the 

endothelial cytoskeleton, leading to increased 
vascular permeability and also enhance 
smooth muscle contraction, resulting in  
vasoconstriction. the lung produces leuko-
trienes following remote iri. the direct 
effects of leukotrienes on pulmonary 
micro vessels lead to increased permeability, 
transient pulmonary hypertension and the 
activation of the endothelium to produce 

thromboxane, resulting in additional vaso-
constriction. the leukotriene b

4,
 released 

by activated neutrophils, leads to further 
pulmonary neutrophil accumulation. 

the administration of 5-lipoxygenase 
synthesis inhibitors has been successfully 
used in animal studies to attenuate iri. Such 
agents abolish the elevations in leukotrienes 
b

4
 and C

4
 and inhibit neutrophil infiltration 

normally induced by iri, reducing mucosal 
permeability.12 However, there is currently 
very little up to date information on their 
use in a clinical situation. 

Nitric oxide 

nitric oxide (no) is a signalling molecule 
synthesised from L-arginine by the nitric 
oxide synthase enzyme (noS) of which 
there are three types, constitutive (cnoS), 
inducible (inoS) and endothelial (enoS). 
An initial surge in no level in the first  
15 minutes of the ischaemic phase is due to 
transient enoS activation. this is followed 
during early reperfusion by a general 
decline in endothelial function and loss of 
functional enoS, so that no production 
falls, along with an increased production 
of reactive oxygen species. enoS-derived 
no is also necessary for the maintenance 
of vascular tone. the reduction in enoS 
levels that occurs in iri may therefore 
predispose to vasoconstriction, a common 
response seen in iri. the second surge in 
no production is largely due to cytokine-
mediated up-regulation of inoS after about 
three hours of reperfusion.

the pathophysiological role of nitric 
oxide in reperfusion injury is variable, being 
dependent on the nature of its generation 
and appears to be tissue specific. in some 
instances, no acts as an anti-oxidant and, in 
others, combines with the superoxide anion 
to form the peroxynitrite radical, a potent 
promoter of lipid peroxidation and hence 
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cellular membrane disruption (reviewed 
in13). manipulation of nitric oxide production 
during iri, using a range of techniques, has 
recently provided considerable evidence for a 
principal role for nitric oxide in the aetiology 
of iri. myocardial iri has been well studied, 
with paradoxical results, where low doses of 
no were found to be protective and high 
doses harmful. the influence of no in skeletal 
muscle iri has been less well characterized, 
with some studies suggesting that no may 
potentiate cytotoxicity and others suggesting 
a beneficial role for no in extremity iri. in 
skeletal muscle iri, no production may be 
deleterious and inhibition of noS activity 
using a non-specific noS inhibitor greatly 
reduced the severity of muscle damage.14 

the assessment of experimental data 
derived from pharmacological noS 
inhibition is difficult due to the non-
specificity of noS inhibitors; administration 
of these inhibitors at differing times during 
the injury merely adds to the complexity. 
in essence, augmentation of no delivery 
may be beneficial with respect to protection, 
particularly in the ischaemic and early 
reperfusion phase. inhibition of the inoS-
induced surge in no production at later 
times during reperfusion also mediates 
defense against iri-induced tissue damage. 
However, in the clinical setting, systemic 
distortion of no kinetics by administering 
noS inhibitors would be likely to induce 
wide-ranging physiological disturbances. 
Further investigations will be needed to define 
a role for noS inhibition in ameliorating 
the severity of iri and local administration 
of these inhibitors may be required. 

Endothelin

endothelins are potent peptide vaso-
constrictors produced by the vascular 
endo thelium. Hypoxia, growth factors, 
angiotensin ii and noradrenaline all 

stimulate their production resulting in Ca2+-
mediated vasoconstriction. endothelin-1 is 
elevated following skeletal muscle iri during 
both the ischaemic and reperfusion phases 
and mediates capillary vasoconstriction, 
neutrophil aggregation and neutrophil-
endothelial interactions. endothelin-1 inhib-
itors, including bosentan and tezosentan, 
inhibit neutrophil infiltration, increase 
functional capillary density, microvascular 
perfusion and hence tissue viability and 
function following iri.15 However these 
inhibitors are not in widespread clinical use. 

Cytokines

Hypoxia and iri both induce the expression 
of numerous cytokines, including tumour 
necrosis factor-alpha (tnF-α,) interleukin-1 
(il-1), interleukin-6 (il-6), interleukin-8 
(il-8) and platelet activating factor (PAF), in 
association with elevations in activity of the 
transcription factor, nF-kb (reviewed in16) 
these cytokines are released systemically and 
are thus important in the development of 
systemic inflammatory response syndrome 
and ultimately multi-system organ failure. 

tnF-α is a 17-kilodalton pro-
inflammatory cytokine produced by activated 
macrophages, monocytes, t-lymphocytes, 
natural killer cells and fibroblasts. it is a potent 
chemoattractant and early response cytokine, 
which subsequently induces expression of 
il-1, il-6, il-8 and PAF. elevated serum 
levels of tnF-α have been detected during 
cerebral and skeletal muscle iri and are 
known to increase neutrophil sequestration 
and permeability following pulmonary iri. 
Serum tnF-α levels increased rapidly in 
an animal model of aortic clamping, thus 
inducing up-regulation of inoS, which 
increased no production in the lungs, 
leading to more severe lung damage.17 in 
the same study, inhibition of tnF-α activity 
prior to limb ischaemia decreased pulmonary 
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no production and reduced the severity of 
iri. tnF-α can also induce the generation 
of roS and enhance the susceptibility of 
the vascular endothelium to neutrophil 
mediated injury, by inducing the expression  
of iCAm-1, which mediates binding of 
neutrophils to the activated endothelium.

numerous studies in animal models 
attest to the potential of tnF-α blockade as 
a therapeutic modality to reduce the severity 
of iri. Anti-tnF-α antibody protected 
against iri-induced pulmonary injury in 
a rat model by preventing microvascular 
damage. the introduction of humanised 
antibodies including etanercept and inflixi-
mab, has provided encouraging results in 
the treatment of other tnF-α-mediated 
inflammatory diseases, including a number 
of forms of arthritis and inflammatory bowel 
disease (reviewed in18). However, clinical 
trials to test the efficacy of tnF-α blockade 
in human iri have not yet been reported.

the cytokines il-1α and il1β are 
produced during iri by tissue macrophages, 
neutrophils and the vascular endothelium. 

il-1α is a potent chemotactic agent and 
stimulates neutrophil infiltration during 
hepatic iri. both il-1α and tnF-α also 
increase levels of expression of iCAm-1 
on the vascular endothelium. exposure of 
endothelial cells in culture to il-1α and 
tnF-α induces synthesis of e-selectin, 
which then interacts with l-selectin on the 
neutrophil surface leading to rolling on the 
endothelial surface. Permanent adhesion of 
the neutrophil to the endothelium is then 
mediated by expression of iCAm-1, il-8 
and PAF in the endothelial membranes 
(Figure 18.3). 

numerous activating stimuli synthesised 
during iri include H

2
o

2
, thrombin, 

leukotrienes C
4
, and d

4, 
il-1b, histamine, 

bradykinin and AtP; all of which induce the 
synthesis of PAF by monocytes, macrophages, 
neutrophils, eosinophils, basophils, platelets 
and endothelial cells. PAF functions as both 
an inter- and intra-cellular messenger, having 
three major effects, vasoconstriction, chemo-
attraction and increased microvascular 
permeability. PAF is rapidly produced 

FigURE 18.3: Neutrophil rolling, adhesion to endothelium and extravasation
During reperfusion, activated neutrophils adhere to the activated endothelium and subsequently extravasate 
into surrounding tissue, resulting in proteolytic degradation of basement membranes. Activated neutrophils 
also generate toxic reactive oxygen species from molecular oxygen, contributing to tissue degradation during 
reperfusion.
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following skeletal muscle and renal iri with 
peak levels after 15 minutes of reperfusion. 
PAF enhances the binding of neutrophils 
to endothelial cells since a PAF-receptor 
antagonist blocked adhesion to endothelial 
cells during iri.19 Similarly pre-treatment 
with the PAF inhibitor lexipafant reduced 
the severity of intestinal barrier dysfunction 
and pulmonary and liver permeability in 
a rat model of intestinal iri.20 However 
lexipafant is unlikely to be clinically useful 
as a pharmacotherapy for iri since, alone, 
it failed to completely inhibit pulmonary 
endothelial damage after small bowel iri.21 

il-6 is a proinflammatory 19-26kda 
protein produced by monocytes, fibroblasts, 
keratinocytes and endothelial cells in 
response to il-1 and tnF-α. il-6 primes 
and stimulates the respiratory burst in 
neutrophils, stimulates endothelial cell 
expression of iCAm-1 and increases endo-
thelial permeability. il-6 is produced in 
hypoperfused skeletal muscle in patients with 
peripheral arterial disease and is released from 
the gut into the systemic circulation during 
reperfusion in aortic aneurysm surgery.22  
in the setting of renal transplantation, il-6 
was released in large amounts from the 
reperfused transplanted kidney during the 
first 30 minutes of reperfusion.23 

il-8 is a potent neutrophil chemotactic 
and activating factor. it is produced by 
monocytes, t cells, nK cells, fibroblasts, 
endothelial cells, eosinophils and neutrophils 
in response to il-1, tnF-α, endotoxin, 
histamine and hypoxia. the chemotactic 
activity of il-8 induces diapedesis of activated 
neutrophils through the endothelium. 
(Figure 18.3) elevated levels of serum il-8 
have been detected during early reperfusion 
following human lung transplantation and 
predict poor graft function.24 An anti il-8 
antibody prevented pulmonary neutrophil 
infiltration and tissue injury in a rabbit 
model of lung iri.25 

Neutrophil and endothelial 
interactions

neutrophils play a major role in tissue 
damage incurred during iri. Activated 
neutrophils are a major source of roS, 
which are generated through the activity 
of the membrane-bound nicotinamide 
adenine dinucleotide phosphate (nAdPH) 
oxidase complex. whilst oxidizing nAdPH 
to nAdP+, nAdPH oxidase also reduces 
molecular oxygen to form the superoxide 
anion. myeloperoxidase, stored in the 
azurophilic granules of neutrophils, converts 
hydrogen peroxide to toxic hypochlorous acid, 
which, in addition to its direct effects, is also 
capable of activating proteases. the activated 
neutrophils also secrete a number of proteases, 
including matrix metalloproteinases, which 
will degrade basement membrane and other 
tissue structures, contributing to the severity 
of tissue destruction.

neutrophil infiltration is observed at 
sites of tissue damage26,27 and the depletion 
of neutrophils reduces the severity of organ 
damage in a mouse model of liver iri.28 
depletion of neutrophils during cardiac 
surgery has been extensively investigated 
as a modality to reduce the severity of 
post-operative cardiac dysfunction with 
inconsistent results. Some studies have shown 
a reduction in markers of cardiac damage 
while others have been less successful in 
demonstrating a clinically relevant effect. 

Selectins are a family of transmembrane 
molecules, expressed on the surface of 
leukocytes, activated endothelial cells and in 
platelets. Selectins mediate the initial phase 
of neutrophil–endothelial cell interactions, 
often termed rolling (Figure 18.3), which 
is essential for their subsequent adhesion 
and extravasation. l-selectin is expressed 
constitutively on the surface of neutrophils 
and initiates the reversible attachment of 
neutrophils to endothelial cells and platelets. 
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Antibody-mediated blocking of l-selectin 
impairs the ability of neutrophils to roll 
on endothelial cells and reduces neutrophil 
infiltration following skeletal muscle and 
pulmonary iri.29

P-selectin is stored in the α-granules of 
platelets and the wiebel-Palade bodies of 
endothelial cells and is rapidly translocated to 
the cell surface along with PAF in response to 
thrombin, histamine, reactive oxygen species, 
complement and tnF-α. typically, peak 
levels of endothelial P-selectin are detected  
6 hours after reperfusion. endothelial 
P-selectin plays a vital role in the rolling of 
neutrophils along the activated endothelium. 
Activation of the endothelium by pro-
inflammatory mediators also results in de 
novo transcription and synthesis of e-selectin. 
expression of endothelial e-selectin is 
induced during both renal and cerebral 
iri. the focal expression of e-selectin at 
sites of endothelial activation promotes 
neutrophil adhesion and infiltration into 
adjacent tissues. in support of a vital role for 
e-selectin in mediating tissue damage during 
iri, a study showed that antibodies against 
e-selectin reduced infarct size following 
cerebral iri in mice.30 blocking the activity 
of selectins shows promise in ameliorating 
the severity of tissue damage in a number 
of animal models of iri. Although some 
promising selectin inhibitors have been 
tested in animal models of iri, this therapy 
has yet to be tested in a clinical situation 
(reviewed in31).

the integrin and immunoglobulin 
supergene families of adhesion molecules 
mediate the strong adhesion of activated 
neutrophils to the endothelium and hence 
allow their subsequent extravasation during 
iri. the integrins form a large family of 
cell surface adhesion molecules that mediate 
intercellular recognition and cellular binding 
to the extracellular matrix. the neutrophil 
β

2
-integrin adhesion glycoprotein complex 

consists of a common polypeptide chain, 
Cd18, which is non-covalently linked 
to three different α-polypeptide chains 
(Cd11a, Cd11b, Cd11c). Cd11a/Cd18 
is expressed on all leukocytes and mediates 
the attachment of stimulated neutrophils to 
the vascular endothelium through a specific 
interaction with iCAm-1 and iCAm-2. 
Chemotactic cytokines (il-1, tnF-α) and 
roS all induce neutrophil adherence to the 
endothelium by Cd11/Cd18-dependent 
mechanisms. the Cd11b/18 complex on  
activated neutrophils interacts with iCAm-1 
on the surface of the endothelial cell to 
mediate firm adhesion of neutrophils prior to 
their extravasation (reviewed in32). All of these 
molecules are required for the development 
of lung injury following skeletal muscle iri. 
using an anti-Cd18 monoclonal antibody, 
inhibition of Cd18-mediated leukocyte 
adhesion prevented vasoconstriction, inhi-
bited vessel leakage and reduced vascular 
resistance in animal models of skeletal muscle 
iri. However, despite encouraging animal 
studies, the clinical efficacy of blocking 
Cd11/Cd18-mediated interactions in iri 
remains doubtful (reviewed in33). Clinical 
trials in humans failed to demonstrate any 
effect of Cd11/Cd18 in reducing infarct 
size following primary coronary angioplasty 
in the setting of acute myocardial infarc-
tion. A more recent review34 summarised the 
results from a number of clinical trials using 
antibodies to Cd11/Cd18, including for 
myocardial infarct and stroke, all of which 
failed to show any significant benefit to the 
patient.

the immunoglobulin supergene family 
(ligands for integrins) contains a large number  
of molecules with multiple immunoglobulin-
g-like domains. Several members of this 
family are involved in leukocyte-endothelial 
cell interactions including iCAm-1, VCAm-1 
and platelet-endothelial cell adhesion 
molecule-1 (PeCAm-1). levels of expression 
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of iCAm-1 on endothelial cells are enhanced 
by exposure to circulating tnF-α that is 
generated in response to iri. VCAm-1 was 
elevated during renal iri in a mouse model 
but, unlike iCAm-1, was independent of 
tnF-α since renal iri in tnF-α knockout 
mice also upregulated VCAm-1. PeCAm-1 
is expressed constitutively on platelets, 
leukocytes and endothelial cells. iri induces 
elevated PeCAm-1 levels thereby enhancing 
activation of neutrophil-endothelial inter-
actions mediated by β-integrins and exacer-
bating neutrophil extravasation and tissue 
damage.

the therapeutic potential of blocking 
the activity of adhesion molecules has been 
tested in a number of animal models with 
encouraging results. using monoclonal 
antibodies, inhibition of iCAm-1 activity 
attenuated neutrophil adhesion in the 
liver, reduced pulmonary sequestration and 
oedema following skeletal muscle iri and 
also reduced intestinal dysfunction following 
iri.35 Antisense oligonucleotides to iCAm-1 
ameliorated renal iri and prevented delayed 
graft dysfunction in a rat model of renal 
transplantation.36 However, results obtained 
in clinical trials have not been as positive. A 
recent clinical trial of anti-iCAm-1 antibody 
therapy in ischaemic stroke (enlimomab 
Acute Stroke trial) concluded that this 
was not an effective treatment and may 
significantly worsen stroke outcome, raising 
significant doubts regarding the efficacy of 
this therapeutic modality.37

Complement activation

Complement activation and deposition also 
contribute significantly to the pathogenesis of  
iri. rubin and colleagues have 
demonstrated that reperfusion of skeletal 
muscle is associated with systemic depletion 
of the complement protein, factor b, 
indicative of activation of the alternative 

complement pathway.38 the complex 
C5b-9 is also deposited into the endothelial 
cell membrane after iri, leading to osmotic 
lysis.39 Pulmonary damage following bilat-
eral hind limb ischemia was significantly 
reduced when the soluble complement 
receptor (sCr1) was administered to rats, 
thus inhibiting complement activity.40 
in the clinical setting, a relationship has 
been demonstrated between the severity of 
multi-system organ dysfunction and degree 
of complement activation after aortic cross 
clamping.41 

inhibition of the complement cascade 
has been demonstrated to improve outcomes 
following iri in a number of different 
animal models. Complement depletion 
of circulating plasma improved the initial 
blood flow and decreased muscle necrosis 
and injury after ischaemia and prolonged 
reperfusion in dogs. Complement blockade 
also prevented leukocyte adhesion, leading 
to better capil lary perfusion and muscle 
cell viability and attenuated the increase in 
permeability index in tissues.42 unequivocal 
evidence for the importance of complement 
activation during skeletal muscle iri has 
been provided from experiments where limb 
ischaemia was induced in C5-deficient mice. 
these mice had approximately 50% less 
tissue damage than the wild-type animals.39 
An additive role of both complement and 
neutrophils in mediating skeletal muscle 
iri has also been observed, with a greater 
reduction in histological damage in 
neutropenic C5-deficient animals than in 
neutropenic or C5-deficient mice alone.39 
these data continue to demonstrate the 
multifactorial nature of tissue damage 
induced during iri since complement 
blockade failed to completely ameliorate 
tissue damage. 
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tiSSue deStruCtion

Proteases and metalloproteinases

the matrix metalloproteinases (mmPs) are 
a family of zinc dependent enzymes that 
have the ability to degrade components 
of the extracellular matrix. together with 
their inhibitors, the tissue inhibitors of 
metalloproteinases (timPs), they are 
the major physiological regulators of the 
extracellular matrix. mmPs are intimately 
involved in all processes that necessitate 
degradation or synthesis of the extracellular 
matrix and important roles for these enzymes 
have been identified in wound healing, 
periodontal disease, cancer metastasis and, 
of particular relevance, vascular disease 
including the development of aneurysms, 
atherosclerotic plaques and reperfusion 
injury.

elevations of mmP-2 and mmP-9 have 
been detected following pulmonary, hepatic 
and cardiac iri. mmPs are also elevated 
following cerebral iri, corresponding 
with opening of the blood-brain barrier, 
degradation of the basal lamina, increased 
capillary permeability and cerebral oedema.43  
definitive roles for mmP-9 in the 
pathophysiology of cerebral iri have been 
demonstrated by using both selective mmP-9 
inhibitors and mmP-9 knockout mice, 
which both significantly reduce cerebral 
infarct size.44 the role for mmPs in renal iri 
is less clear. mmP-2 may have a late role in 
renal iri with an elevation detected as late 
as 8 weeks after iri.45 However the mmP 
inhibitor (batimastat) did not alter the 
severity of iri induced renal dysfunction.46

barr and co-workers47 carried out a study 
examining acute ischaemic stroke patients by 
mri and correlated systemic plasma mmP-9 
levels with a hyperintense acute reperfusion 
injury marker (HArm), measured by mri 
24 hours later. Plasma mmP-9 was a signific-
ant predictor of elevated HArm measures, 

supporting the hypothesis that elevated 
mmP-9 is associated with disruption of the 
blood brain barrier after ischaemic stroke. 
these results raise the possibility that inhibi-
tion of mmP-9 may be a useful modality to 
reduce the severity of cerebral damage.

Studies in our laboratory have demon-
strated both a local and systemic role for 
mmP-2 and mmP-9 in the degradation 
of type iV collagen in pulmonary tissues 
and in skeletal muscle following lower limb 
iri.27 Permanent ischaemia alone, without 
reperfusion, also results in elevation of 
mmP-2 and mmP-9, correlating with 
destruction of the basement membrane 
components, type iV collagen and laminin.

Apoptotic cell death during 
ischaemia-reperfusion injury

tissue destruction resulting from iri can be 
due to either necrotic or apoptotic cell death. 
Apoptosis or programmed cell death is an 
active process characterized by a series of gene-
directed events leading to a characteristic cell 
morphology, controlled dnA fragmentation 
and eventually death of the cell. the role of 
apoptosis in iri-induced tissue damage has 
been widely investigated in recent years. 
oxidative stress and the production of roS 
will induce apoptosis, the characteristics of 
which can readily be recognised following 
cerebral iri. Similarly, renal and cardiac iri 
all result in detectable levels of apoptosis 
in the damaged tissue. Apoptosis therefore 
appears to play a fundamental role in cellular 
damage occurring during iri in a number 
of tissues. However the role of apoptosis in 
skeletal muscle iri remains controversial. 
Studies conducted in our laboratory,26 in 
agreement with Knight and co-workers,48 
have failed to detect any evidence of apoptosis 
in rat skeletal myocytes following iri. this 
implicates a tissue-specific mechanism of cell 
death following iri. blocking the apoptotic 
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cascade, using specific inhibitors directed 
against pro-apoptotic caspase enzymes, 
have been partially effective in animal 
models, reducing the severity and infarct size 
following hepatic and cardiac iri.

No reflow phenomenon

no reflow is the failure of microvascular 
perfusion, following restoration of flow 
to previously ischaemic tissue. the cause 
of this phenomenon has not been fully 
elucidated (reviewed in49) but is certainly 
multifactorial. Cytokines and activated 
neutrophils act synergistically to produce 
microvascular barrier dysfunction. the 
resultant increase in permeability leads to  
the exudation of fluids and proteins, increas-
ing the interstitial pressure and decreasing the 
net intravascular pressure. in addition, Cd18-
dependent leukocyte plugging produces 
partial occlusion of post-capillary venules,  
further contributing to no-reflow. neutro-
phil depletion virtually abolishes the 
phenomenon in the myocardium, brain and 
skeletal muscle, confirming a vital role for 
neutrophils in no-reflow. 

tHerAPeutiC APProACHeS  
to iri

Ischaemic preconditioning

ischaemic preconditioning consists of brief 
and repetitive episodes of iri before the 
induction of sustained organ ischaemia and 
is effective in reducing the severity of tissue 
damage. the preconditioning effect can be 
delivered remotely instead of to the target 
organ. this treatment could be useful in 
a number of operative settings including 
transplantation, coronary bypass grafting and 
elective major vascular surgical procedures 
where the onset of ischaemia can be tightly 
controlled. in these settings, brief extremity 

iri (10 minutes) administered by tourniquet 
before surgery has been widely investigated 
and shows promise as a therapy to reduce the 
severity of iri. 

Animal models of a number of settings 
of iri have been used to investigate 
mechanisms of ischaemic preconditioning 
but the basic molecular mechanisms 
remain unclear, probably due to the 
multiple signal transduction pathways 
involved in this phenomenon. However it 
is generally recognised that brief ischaemic 
preconditioning induces a cascade of 
intracellular kinases, which subsequently 
modify mitochondrial function. A recent 
study in a rat model of lower limb iri 
illustrated clearly that two brief 10 minute 
episodes of iri before a full 60 minutes of 
ischaemia was effective in reducing pro-
inflammatory neutrophil-endothelium 
interactions. this effect was noted in both 
the lower limb itself and in remote tissues, 
illustrating the systemic nature of this 
phenomenon.50 in a mouse model of hind 
limb iri, preconditioning significantly 
reduced tissue damage in the limb itself and 
also in lung and small bowel. Preconditioned 
animals were also significantly protected 
against post-operative mortality.51

A large number of clinical trials have also 
been reported investigating the efficacy of 
ischaemic preconditioning but with varying 
degrees of success (reviewed in52). A small 
randomised clinical trial aimed to determine  
if remote lower limb ischaemic pre-
conditioning before eVAr could reduce 
the severity of renal and cardiac damage.53 
A significant reduction in urinary bio-
markers of renal injury was detected in 
the preconditioning cohort but this small 
pilot trial was unable to detect any effect 
on clinical endpoints. However, in the 
setting of open AAA repair where operative 
ischemia is profound, promising results 
were obtained. remote preconditioning 
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significantly protected against post-operative 
myocardial injury, myocardial infarc-
tion, and renal impairment.54 An excellent 
‘proof-of concept’ study of ischaemic 
preconditioning was recently reported 
in the setting of evolving St-elevation 
acute myocardial infarction. Subjects were 
randomised while in the ambulance and 
received intermittent arm ischaemia during 
transport to hospital (four cycles of 5 minute 
inflation and 5 minute deflation of a blood-
pressure cuff ). the primary endpoint was 
the myocardial salvage index 30 days after 
primary percutaneous coronary intervention, 
measured by myocardial perfusion imaging. 
the data showed convincingly that remote 
ischaemic conditioning before hospital 
admission increased myocardial salvage.55 
Further studies are needed to verify the effect 
of remote conditioning on clinical outcomes 
but this therapeutic modality currently 
appears very promising.

Ischaemic post-conditioning

ischaemic post-conditioning is defined as 
rapid sequential intermittent interruption of 
blood flow applied during the early moments 
of reperfusion. this technique is particularly 
relevant where the initial ischaemic insult 
could not have been predicted, thus a 
preconditioning approach to limiting 
tissue damage could not have been applied. 
experimental animal models have been 
used to successfully show attenuation of 
organ injury, including the heart, spinal 
cord, brain, kidney, liver, muscle, lung and 
intestines (reviewed in56). the mechanisms 
of post-conditioning are not yet entirely 
clear but appear to involve multiple 
signalling pathways and molecules, including 
protein kinases, roS, pro-inflammatory 
cytokines and no, as well as alterations in 
mitochondrial function (reviewed in57). 

Animal models of particular relevance to 

vascular surgical procedures have been tested 
widely and results show promise for post-
conditioning as an effective therapy to reduce 
the severity of iri. in a rat model of lower 
limb ischaemia induced by aortic clamping, 
rats underwent 180 minutes of ischaemia 
followed by post-conditioning consisting 
of six cycles of 10 seconds aortic occlusion 
followed by 10 seconds declamping at the 
beginning of reperfusion. Post-conditioning 
caused a significant reduction in both the 
severity of systemic inflammatory responses 
and degree of remote pulmonary and renal 
damage.58 in a similar study in the rat,59 
60 minutes infrarenal aortic cross-clamping 
followed by intermittent 4 times 15 seconds 
reperfusion-15 seconds ischaemic episodes 
before reperfusion, was effective in reducing 
production of roS, leukocyte-endothelial 
activation and cytokine production.

based on the experimental models, 
ischaemic postconditioning thus appears 
to show promise as an effective therapy in 
vascular surgery to reduce reperfusion injuries 
after aortic surgery and revascularization 
procedures (reviewed in60). Some clinical 
studies have verified these findings, although 
this has been largely limited to cardiac iri. 
However, the duration of the occlusion and 
reperfusion periods will be critical to the 
degree of protection and further studies 
are needed to calculate useful algorithms to 
plan therapeutic strategies after a significant 
ischaemic insult.

Conditioning effects of volatile 
anaesthetics

Anaesthetics have been widely demon-
strated to reduce the severity of iri-induced 
damage in the setting of myocardial ischaemia 
and reperfusion during cardiac surgery 
(reviewed in61). However, there is conflicting 
evidence regarding the relative contributions 
of preconditioning, conditioning during 
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ischaemia and postconditioning to the 
significant cardioprotection provided by 
anaesthetics. the molecular mechanisms and 
signal transduction pathways involved in 
protection are an area of active investigation. 
A proteomic study demonstrated that 
volatile anaesthetics (isoflurane, sevoflurane 
or desflurane) induced long lasting changes 
in the expression of 106 proteins in the rat 
myocardium.62 evidence also suggests that 
inhibition by anaesthetics of the opening of 
the mitochondrial permeability pore may 
be a key mechanism of anaesthetic-induced 
preconditioning. Anaesthetic-induced post-
conditioning mechanisms are also multi-
factorial. Volatile anaesthetics are known to 
inhibit neutrophil adhesion in the coronary 
arteries during the reperfusion phase, 
thereby inhibiting the inflammatory action 
of activated neutrophils in post-ischaemic 
tissues (Figure 18.3). 

there is good clinical evidence for the 
cardioprotective effects of volatile anaes-
thetics during cardiac surgery. A meta-analysis 
examined randomized trials comparing 
volatile with non-volatile anaesthesia in 
coronary bypass surgery. there was no sig-
nificant difference in myocardial ischaemia, 
myocardial infarct, intensive care unit length 
of stay or in-hospital mortality. However, 
patients receiving volatile anaesthetics had 
significantly higher cardiac indices, lower 
troponin i serum concentrations and a lower 
requirement for inotropic support.63 A more 
recent large multicentre study provided 
excellent evidence that volatile anaesthesia 
significantly reduced mortality after coronary 
bypass grafting.64 evidence for anaesthetic 
protection in vascular surgical settings other 
than in cardiac iri is not currently available 
but is likely to be equally significant and 
should be actively investigated in the  
future.

Pharmacological treatments

As discussed in many of the sections above, a 
wide range of pharmacological therapies have 
been tested in both animal models and in the 
clinic. Although many of the animal models 
show considerable promise in reducing the 
severity of iri, results from clinical trials 
have uniformly been disappointing. A recent 
Cochrane review reported on treatments to 
reduce iri during liver resection under vascu-
lar control.65 they identified 15 randomised 
trials, which examined 11 pharmacological 
interventions (methylprednisolone, multi-
vitamin antioxidant infusion, vitamin e 
infusion, amrinone, prostaglandin e1, 
pentoxifylline, mannitol, trimetazidine, dex-
trose, allopurinol and a thromboxane A2  
synthetase inhibitor). Although some 
therapies improved liver enzyme levels, 
there were no significant differences between 
the groups for mortality, liver failure, or 
perioperative morbidity. A second Cochrane 
review from the same authors66 examined the 
effects of prostaglandin e1, pentoxifylline, 
dopexamine, dopamine, ulinastatin, gantaile, 
sevoflurane, and propofol during liver iri 
and reached the same conclusion that there 
were no significant differences. 

Statin therapies have been widely 
accepted into clinical practice and there is 
also considerable evidence, both experimental 
and clinical, that statins will reduce the 
severity of iri in a range of settings. Statins 
inhibit a range of cellular responses to iri-
induced inflammation, including inhibition 
of nFkb activity, which leads to decreased 
transcription of mmPs, adhesion molecules 
and cytokine genes. binding of adhesion 
molecules on activated neutrophils to 
endothelial cell surface receptors is also 
blocked. Secretion of mmPs from activated 
neutrophils is also inhibited by statins. in 
the endothelium, levels of expression of 
enoS mrnA are increased and the enoS 
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protein is activated, while expression of 
endothelin-1 is inhibited. All of these effects 
will ameliorate the severity of tissue damage 
during iri (reviewed in67).

trials of lower limb iri in the rat were 
carried out in our laboratory and illustrated 
convincingly that pre-treatment for a week 
with simvastatin before iri markedly 
protected both skeletal muscle and remote 
organs including the lungs and kidneys.14,68 
in the clinical setting, a recent review69 
discussed the efficacy of statins in patients 
undergoing a range of vascular surgical 
procedures. Symptomatic patients with 
carotid artery stenosis and taking statins 
appear to have better outcomes after carotid 
endartarectomy than those not on statins, 
although the difference between the cohorts 
is not marked. in the setting of infrainguinal 
bypass for peripheral arterial disease, the 
indications that statins may protect against 
iri during surgery are less definitive with 
some conflicting results although 1-year 
mortality was improved. evidence for any 
effect of statin treatment on the severity 
of postoperative complications after AAA 
repair is lacking, although a retrospective 
observational study showed that all-cause 
mortality was reduced in those on long term 
statin therapy.70 However, since all vascular 
patients should be receiving statin treatment 
for secondary prevention of cardiovascular 
disease, prospective randomized trials to 
obtain definitive results can no longer 
ethically be performed.

SummAry

in summary, iri is a highly complex series 
of interwoven pro-inflammatory and 
pathological events. the production, release 
and activation of cytokines, roS, proteases 
and complement if left unchecked, leads 
to both local and systemic injury with 
potentially fatal consequences. the failure  

of therapeutic interventions to translate 
into clinical practice is a reflection of this 
complexity and redundancy within the 
system. new therapeutic agents directed 
towards multiple areas within this cascade 
may be required to overcome this difficult 
clinical challenge. 
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