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INTRODUCTION

Acute wounds normally heal in an orderly 
and efficient manner, and progress smoothly 
through the four distinct, but overlapping 
phases of wound healing: haemostasis, 
inflammation, proliferation and remodelling 
(Figure 23.1).1,2,3 In contrast, chronic wounds 
will similarly begin the healing process, 
but will have prolonged inflammatory, 
proliferative, or remodelling phases, resulting 
in tissue fibrosis and in non-healing ulcers.4 
The process of wound healing is complex and 
involves a variety of specialized cells, such as 
platelets, macrophages, fibroblasts, epithelial 
and endothelial cells. These cells interact 
with each other and with the extracellular 
matrix. In addition to the various cellular 
interactions, healing is also influenced by the 
action of proteins and glycoproteins, such 
as cytokines, chemokines, growth factors, 
inhibitors, and their receptors. Each stage of 
wound healing has certain milestones that 
must occur in order for normal healing to 
progress. In order to identify the differences 
inherent in chronic wounds that prevent 

healing, it is important to review the process 
of healing in normal wounds 

PHASES OF ACUTE WOUND 
HEALING

Haemostasis 

Haemostasis occurs immediately following 
an injury.5 To prevent exsanguination, 
vasoconstriction occurs and platelets undergo 
activation, adhesion and aggregation at the 
site of injury. Platelets become activated 
when exposed to extravascular collagen 
(such as type I collagen), which they detect 
via specific integrin receptors, cell surface 
receptors that mediate a cell’s interactions 
with the extracellular matrix. Once in contact 
with collagen, platelets release the soluble 
mediators (growth factors and cyclic AMP) 
and adhesive glycoproteins, which signal 
them to become sticky and aggregate. The  
key glycoproteins released from the platelet 
alpha granules include fibrinogen, fibro
nectin, thrombospondin, and von Willebrand 
factor. As platelet aggregation proceeds, 
clotting factors are released resulting in the  
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deposition of a fibrin clot at the site of  
injury. The fibrin clot serves as a provisional 
matrix.6 The aggregated platelets become 
trapped in the fibrin web and provide the  
bulk of the clot (Figure 23.2). Their mem
branes provide a surface on which inactive 
clotting enzyme proteases are bound, become 
activated and accelerate the clotting cascade. 

Growth factors are also released from the 
platelet alpha granules, and include platelet 
derived growth factor (PDGF), transforming 
growth factor beta (TGF-β), transforming 
growth factor alpha (TGF-α), basic fibroblast 
growth factor (bFGF), insulin-like growth 
factor-1 (IGF-1), and vascular endothelial 
growth factor (VEGF). Major growth factor 

Figure 23.1: Phases of Normal Wound Healing. Cellular and molecular events during normal wound healing 
progress through four major, integrated, phases of haemostasis, inflammation, proliferation and remodelling.

Figure 23.2: Haemostasis Phase. At the time of injury, the fibrin clot forms the provisional wound matrix and 
platelets release multiple growth factors initiating the repair process.
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families are presented in Table 23.1. Neutro
phils and monocytes are then recruited by 
PDGF and TGF-β from the vasculature to 
initiate the inflammatory response. A break-
down fragment generated from complement, 
C5a, and a bacterial waste product, f-Met-
Leu-Phe, also provide additional chemotactic 
signals for the recruitment of neutrophils to 
the site of injury. Meanwhile, endothelial 
cells are activated by VEGF, TGF-α and 

bFGF to initiate angiogenesis. Fibroblasts 
are then activated and recruited by PDGF 
to migrate to the wound site and begin pro-
duction of collagen and glycosaminoglycans, 
proteins in the extracellular matrix which 
facilitate cellular migration and interactions 
with the matrix supporting framework. Thus, 
the healing process begins with hemostasis, 
platelet deposition at the site of injury, and 
interactions of soluble mediators and growth 

TABLE 23.1: Major growth factor families

Growth factor family Cell source Actions

Transforming Growth Factor b 
      TGF-β1, TGF-β2

      TGF-β3

Platelets
Fibroblasts
Macrophages

Fibroblast Chemotaxis and Activation
ECM Deposition 
    ⇑ Collagen Synthesis
    ⇑ TIMP Synthesis
    ⇓ MMP Synthesis
Reduces Scarring
    ⇓ Collagen
    ⇓ Fibronectin

Platelet Derived Growth Factor
      PDGF-AA, PDGF-BB, VEGF

Platelets
Macrophages
Keratinocytes
Fibroblasts

Activation of Immune Cells and 
Fibroblasts
ECM Deposition
    ⇑ Collagen Synthesis
    ⇑ TIMP Synthesis
    ⇓ MMP Synthesis
Angiogenesis

Fibroblast Growth Factor
      Acidic FGF, Basic FGF, KGF*

Macrophages
Endothelial Cells
Fibroblasts

Angiogenesis
Endothelial Cell Activation
Keratinocyte Proliferation and Migration
ECM Deposition

Insulin-like Growth Factor
      IGF-I, IGF-II, Insulin

Liver
Skeletal Muscle
Fibroblasts
Macrophages
Neutrophils

Keratinocyte Proliferation
Fibroblast Proliferation
Endothelial Cell Activation
Angiogenesis
  ⇑ Collagen Synthesis
ECM Deposition
Cell Metabolism

Epidermal Growth Factor
      EGF, HB-EGF**, TGF-α,  
      Amphiregulin, Betacellulin

Keratinocytes
Macrophages

Keratinocyte Proliferation and Migration
ECM Deposition

Connective Tissue Growth Factor
      CTGF

Fibroblasts
Endothelial Cells
Epithelial Cells

Mediates Action of TGF-βs on Collagen 
Synthesis

*KGF - keratinocyte growth factor
**HB-EGF - Heparin-binding EGF-like growth factor
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factors with the extracellular matrix to set the 
stage for subsequent healing events.1,2,7 

Inflammation

Inflammation, the next stage of wound heal-
ing occurs within the first 24 hours after 
injury and can last for up to 2 weeks in 
normal wounds and significantly longer in 
chronic non-healing wounds (Figure 23.3).  
Mast cells release granules filled with 
enzymes, histamine and other active amines, 
which are responsible for the characteristic 
signs of inflammation, the rubor (redness), 
calor (heat), tumor (swelling) and dolor (pain) 
around the wound site. Neutrophils, mono-
cytes, and macrophages are the key cells dur-
ing the inflammatory phase. They cleanse the 
wound of infection and debris and release 
soluble mediators such as proinflammatory 
cytokines (including IL-1, IL-6, IL-8, and 
TNF-α), and growth factors (such as PDGF, 
TGF-β, TGF-α, IGF-1, and FGF) that are 
involved in the recruitment and activation of 
fibroblasts and epithelial cells in preparation 
for the next phase in healing. Cytokines that 

play important roles in regulating inflam
mation in wound healing are described in 
Table 23.2.

In addition to the growth factors and 
cytokines, a third important group of small 
regulatory proteins, listed in Table 23.3, has 
been identified, and are collectively named 
chemokines, from a contraction of chemo
attractive cytokine(s).8,9,10 The structural and 
functional similarities among chemokines 
were not initially appreciated, and this has led 
to an idiosyncratic nomenclature consisting 
of many acronyms that were based on their 
biological functions, (e.g., monocyte chemo
attractant protein-1 (MCP-1), macrophage 
inflammatory protein-1, MIP-1), their source 
for isolation (platelet factor-4, PF-4) or their 
biochemical properties (interferon-inducible 
protein of 10 kDa (IP-10), or regulated 
upon activation normal T-cell expressed and 
secreted, RANTES). As their biochemical 
properties were established, it was recognized 
that the approximately 40 chemokines could 
be grouped into four major classes based on 
the pattern of cysteine residues located near 
the N-terminus. In fact, there has been a 

Figure 23.3: Inflammation Phase. Within a day following injury, the inflammatory phase is initiated by 
neutrophils that attach to endothelial cells in the vessel walls surrounding the wound (margination), change 
shape and move through the cell junctions (diapedesis), and migrate to the wound site (chemotaxis).
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recent trend to re-establish a more organ-
ized nomenclature system based on these 
four major classes. In general, chemokines 
have two primary functions: 1) they regu-
late the trafficking of leukocyte populations  
during normal health and development,  
and 2) they direct the recruitment and acti-
vation of neutrophils, lymphocytes, macro
phages, eosinophils and basophils during 
inflammation. 

Neutrophils
Neutrophils are the first inflammatory cells 
to respond to the soluble mediators released 
by platelets and the coagulation cascade. 

They serve as the first line of defense against 
infection by phagocytosing and killing 
bacteria, and by removing foreign materials 
and devitalized tissue. During the process 
of extravasation of inflammatory cells into 
a wound, important interactions occur 
between adhesion molecules (selectins, cell 
adhesion molecules (CAMs) and cadherins) 
and receptors (integrins) that are associated 
with the plasma membranes of circulating 
leukocytes and vascular endothelial cells.11,12 
Initially, leukocytes weakly adhere to the 
endothelial cell walls via their selectin 
molecules which causes them to decelerate 
and begin to roll on the surface of endothelial 

TABLE 23.2: Cytokines involved in wound healing

Cytokine Cell source Biological activity

Pro-inflammatory Cytokines

TNF-α Macrophages PMN margination and cytotoxicity,  
± collagen synthesis; provides metabolic 
substrate

IL-1 Macrophages
Keratinocytes

Fibroblast and keratinocyte chemotaxis, 
collagen synthesis

IL-2 T lymphocytes Increases fibroblast infiltration and 
metabolism

IL-6 Macrophages
PMNs
Fibroblasts

Fibroblast proliferation, hepatic acute-phase 
protein synthesis

IL-8 Macrophages
Fibroblasts

Macrophage and PMN chemotaxis, 
keratinocyte maturation

IFN-γ T lymphocytes
Macrophages

Macrophage and PMN activation; retards 
collagen synthesis and cross-linking; 
stimulates collagenase activity

Anti-inflammatory Cytokines

IL-4 T lymphocytes
Basophils
Mast cells

Inhibition of TNF, IL-1, IL-6 production; 
fibroblast proliferation, collagen synthesis

IL-10 T lymphocytes
Macrophages
Keratinocytes

Inhibition of TNF, IL-1, IL-6 production; 
inhibits macrophage and PMN activation
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cells. While rolling, leukocytes can become 
activated by chemoattractants (cytokines, 
growth factors or bacterial products). After 
activation, leukocytes firmly adhere to 
endothelial cells as a result of the binding 
between their integrin receptors and ligands 
such as VCAM and ICAM that are expressed 
on activated endothelial cells. Chemotactic 
signals present outside the venule then induce 
leukocytes to squeeze between endothelial 
cells of the venule and migrate into the 
wounded tissue using their integrin receptors 
to recognize and bind to extracellular 
matrix components. The inflammatory 
cells release elastase and collagenase to help 
them migrate through the endothelial cell 
basement membrane and to migrate into 
the extracellular matrix (ECM) at the site 
of the wound. Neutrophils also produce 
and release inflammatory mediators such 
as TNF-α and IL-1 that further recruit and 

activate fibroblasts and epithelial cells. After 
the neutrophils migrate into the wound site, 
they generate oxygen free radicals, which 
kill phagocytized bacteria, and they release 
high levels of proteases (neutrophil elastase 
and neutrophil collagenase) which remove 
components of the extracellular matrix that 
were damaged by the injury. The persistent 
presence of bacteria in a wound may 
contribute to chronicity through continued 
recruitment of neutrophils and their release 
of proteases, cytokines and reactive oxygen 
species. Usually neutrophils are depleted in 
the wound after 2 to 3 days by the process 
of apoptosis, and they are replaced by tissue 
monocytes.

Macrophages
Activated macrophages play pivotal roles in 
the regulation of healing, and the healing 
process does not proceed normally without 

TABLE 23.3: Chemokine familes involved in wound healing

Chemokines Cells affected

α-CHEMOKINES (CXC) 
with glutamic acid-leucine-arginine near the N-terminal
Interleukin-8 (IL-8)

Neutrophils

α-CHEMOKINES (CXC)
without glutamic acid-leucine-arginine near the N-terminal
Interferon -inducible protein of 10 kd (IP-10)
Monokine induced by interferon-γ (MIG)
Stromal-cell-derived factor 1 (SDF-1)

Activated T lymphocytes

β-CHEMOKINES (CC)
Monocyte chemoattractant proteins (MCPs):
MCP-1,-2,-3,-4,-5
Regulated upon activation normal T-cell 
    expressed and secreted (RANTES)
Macrophage inflammatory protein (MIP-1α)
Eotaxin

Eosinophils
Basophils
Monocytes
Activated T lymphocytes

γ-CHEMOKINES (C)
Lymphotactin

Resting T lymphocytes

δ-CHEMOKINES (CXXXC)
Fractalkine

Natural killer cells
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macrophages. Macrophages begin as 
circulating monocytes that are attracted to 
the wound site beginning about 24 hours 
after injury (Figure 23.4). They extravasate 
by the mechanisms described for neutrophils, 
and are stimulated to differentiate into 
activated tissue macrophages in response to 
chemokines, cytokines, growth factors and 
soluble fragments of extracellular matrix 
components produced by proteolytic 
degradation of collagen and fibronectin.13 
Similar to neutrophils, tissue macrophages 
have a dual role in the healing process. 
They patrol the wound area ingesting and 
killing bacteria, and removing devitalized 
tissue through the actions of secreted 
MMPs and elastase. Macrophages differ 
from neutrophils in their ability to more 
closely regulate the proteolytic destruction 
of wound tissue by secreting inhibitors 
for the proteases. As important as their 
phagocytic role, macrophages also mediate 
the transition from the inflammatory phase 
to the proliferative phase of healing. They 
release a wide variety of growth factors and 

cytokines including PDGF, TGF-β, TGF-α, 
FGF, IGF-1, TNFα, IL-1, and IL-6. Some of 
these soluble mediators recruit and activate 
fibroblasts, which will then synthesize, 
deposit, and organize the new tissue matrix, 
while others promote angiogenesis. The 
absence of neutrophils and a decrease in 
the number of macrophages in the wound 
is an indication that the inflammatory phase 
is nearing an end, and that the proliferative 
phase is beginning.

Proliferative phase

The milestones during the proliferative phase 
include replacement of the provisional fibrin 
matrix with a new matrix of collagen fibers, 
proteoglycans, and fibronectin to restore the 
structure and function to the tissue. Another 
important event in healing is angiogenesis, 
the in-growth of new capillaries to replace 
the previously damaged vessels and restore 
circulation. Other significant events in 
this phase of healing are the formation of 
granulation tissue and epithelialization. 

Figure 23.4: Proliferation Phase. Fixed tissue monocytes activate, move into the site of injury, transform into 
activated wound macrophages that kill bacteria, release proteases that remove denatured ECM, and secrete 
growth factors that stimulate fibroblasts, epidermal cells and endothelial cells to proliferate and produce scar 
tissue.
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Fibroblasts are the key cells in the proliferative 
phase of healing.

Fibroblast migration
Fibroblasts migrate into the wound in 
response to multiple soluble mediators 
released initially by platelets and later by 
macrophages (Figure 23.4). Fibroblast 
migration in the extracellular matrix depends 
on precise recognition and interaction 
with specific components of the matrix. 
Fibroblasts in normal dermis are typically 
quiescent and sparsely distributed, whereas 
in the provisional matrix of the wound site 
and in the granulation tissue, they are quite 
active and numerous. Their migration and 
accumulation in the wound site requires 
them to change their morphology and to 
produce and secrete proteases to clear a path 
for their movement from the ECM into the 
wound site. 

Fibroblasts begin moving by first bind-
ing to matrix components such as fibronec-
tin, vitronectin and fibrin via their integrin 
receptors. Integrin receptors attach to spe-
cific amino acid sequences (such as R-G-D 
or arginine-glycine-aspartic acid) or bind-
ing sites in these matrix components. While  
one end of the fibroblast remains bound 
to the matrix component the cell extends 
a cytoplasmic projection to find another 
binding site. When the next site is found, 
the original site is released (apparently by 
local protease activity), and the cell uses its 
cytoskeleton network of actin fibers to pull 
itself forward. 

The direction of fibroblast movement is 
determined by the concentration gradient of 
chemotactic growth factors, cytokines and 
chemokines, and by the alignment of the 
fibrils in the ECM and provisional matrix. 
Fibroblasts tend to migrate along these fibrils 
as opposed to across them. Fibroblasts secrete 
proteolytic enzymes locally to facilitate their 
forward motion through the matrix. The 

enzymes secreted by the fibroblasts include 
three types of MMPs, collagenase (MMP-1),  
gelatinases (MMP-2 and MMP-9) which 
degrade gelatin substrates, and stromelysin 
(MMP-3) which has multiple protein sub-
strates in the ECM. 

Collagen and extracellular matrix 
production
The collagen, proteoglycans and other com-
ponents that comprise granulation tissue 
are synthesized and deposited primarily by 
fibroblasts. PDGF and TGF-β are two of the 
most important growth factors that regulate 
fibroblast activity. PDGF, which predomin
antly originates from platelets and macro-
phages, stimulates a number of fibroblast 
functions including proliferation, chemo-
taxis, and collagenase expression. TGF-β, 
also secreted by platelets and macrophages 
is considered to be the master control  
signal that regulates extracellular matrix  
deposition. Through the stimulation of gene 
transcription for collagen, proteoglycans 
and fibronectin, TGF-β increases the overall 
production of matrix proteins. At the same 
time, TGF-β down-regulates the secretion of 
proteases responsible for matrix degradation 
and also stimulates synthesis of tissue inhibi-
tor of metalloproteinases (TIMP), to further 
inhibit breakdown of the matrix. Recent data 
indicate that a new growth factor, named 
connective tissue growth factor (CTGF), 
mediates many of the effects of TGF-β on 
the synthesis of extracellular matrix.14

Once the fibroblasts have migrated into 
the matrix they again change their morphol-
ogy, settle down and begin to proliferate and 
to synthesize granulation tissue compon
ents including collagen, elastin and proteo
glycans. Fibroblasts attach to the cables of 
the provisional fibrin matrix and begin to 
produce collagen. At least 20 individual 
types of collagen have been identified to 
date. Type III collagen is initially synthesized  
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at high levels, along with other extracellu-
lar matrix proteins and proteoglycans. After 
transcription and processing of the collagen 
mRNA, it is attached to polyribosomes on 
the endoplasmic reticulum where the new 
collagen chains are produced. During this 
process, there is an important step involving 
hydroxylation of proline and lysine residues. 
Three protein chains associate and begin to 
form the characteristic triple helical structure 
of the fibrillar collagen molecule, and the 
nascent chains undergo further modification 
by the process of glycosylation. Hydroxypro-
line in collagen is important because it plays 
a major role in stabilizing the triple helical 
conformation of collagen molecules. Fully 
hydroxylated collagen has a higher melting 
temperature. When levels of hydroxyproline 
are low, for example in vitamin C-deficient 
conditions (scurvy), the collagen triple 
helix has an altered structure and denatures 
(unwinds) much more rapidly and at lower 
temperatures. To ensure optimal wound 
healing, wound care specialists should be 
sure patients are receiving good nutritional 
support with a diet with ample protein and 
vitamin C.

Finally, procollagen molecules are 
secreted into the extracellular space where 
they undergo further processing by proteo-
lytic cleavage of the short, non-helical seg-
ments at the N- and C-termini. The collagen 
molecules then spontaneously associate in a 
head-to-tail and side-by-side arrangement 
forming collagen fibrils, which associate 
into larger bundles that form collagen fibers.  
In the extra-cellular spaces an important 
enzyme, lysyl oxidase, acts on the collagen 
molecules to form stable, covalent, cross-
links. As the collagen matures and becomes 
older, more and more of these intramolecular 
and intermolecular cross-links are placed in 
the molecules. This important cross-linking 
step gives collagen its strength and stability, 
and the older the collagen the more cross-
link formation has occurred.

Dermal collagen on a per weight basis 
approaches the tensile strength of steel. In 
normal tissue, it is a strong molecule and 
highly organized. In contrast, collagen fibers  
formed in scar tissue are much smaller and 
have a random appearance. Scar tissue is 
always weaker and will break apart before 
the surrounding normal tissue.

Angiogensis
Damaged vasculature must be replaced to 
maintain tissue viability. The process of 
angiogenesis is stimulated by local factors of 
the microenvironment including low oxygen 
tension, low pH, and high lactate levels.15 
Also, certain soluble mediators are potent 
angiogenic signals for endothelial cells. Many 
of these are produced by epidermal cells, 
fibroblasts, vascular endothelial cells and 
macrophages, and include bFGF, TGF-β, 
and VEGF. It is now recognized that oxygen 
levels in tissues directly regulate angiogenesis 
by interacting with oxygen sensing proteins 
that regulate transcription of angiogenic 
and anti-angiogenic genes. For example, 
synthesis of VEGF by capillary endothelial 
cells is directly increased by hypoxia through 
the activation of the recently identified 
transcription factor, hypoxia-inducible factor 
(HIF), which binds oxygen.16 When oxygen 
levels surrounding capillary endothelial 
cells drop, levels of HIF increase inside 
the cells. HIF-1 binds to specific DNA 
sequences and stimulates transcription of 
specific genes such as VEGF that promote 
angiogenesis. When oxygen levels in wound 
tissue increase, oxygen binds to HIF, leading 
to the destruction of HIF molecules in 
cells and decreased synthesis of angiogenic 
factors. Regulation of angiogenesis involves 
both stimulatory factors like VEGF and 
anti-angiogenic factors like angiostatin, 
endostatin, thrombospondin, and pigment 
epithelium-derived factor (PEDF). 
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Binding of angiogenic factors causes 
endothelial cells of the capillaries adjacent 
to the devascularized site to begin to migrate 
into the matrix and then proliferate to form 
buds or sprouts. Once again the migra-
tion of these cells into the matrix requires 
the local secretion of proteolytic enzymes, 
especially MMPs. As the tip of the sprouts 
extend from endothelial cells and encoun-
ter another sprout, they develop a cleft that 
subsequently becomes the lumen of the 
evolving vessel and complete a new vascular 
loop. This process continues until the capil-
lary system is sufficiently repaired and the 
tissue oxygenation and metabolic needs are 
met. It is these new capillary tuffs that give 
granulation tissue its characteristic bumpy 
or granular appearance. 

Granulation
Granulation tissue is a transitional replace
ment for normal dermis, which eventually 
matures into a scar during the remodelling 
phase of healing. It is characterized from 
unwounded dermis by an extremely dense 
network of blood vessels and capillaries, 
elevated cellular density of fibroblasts and 
macrophages and randomly organized  col
lagen fibers. It also has an elevated metabolic 
rate compared to normal dermis, which 
reflects the activity required for cellular migra
tion and division and protein synthesis. 

Epithelialization
All dermal wounds heal by three basic 
mechanisms: contraction, connective tissue 
matrix deposition and epithelialization. 
Wounds that remain open heal by 
contraction; the interaction between cells and 
matrix results in movement of tissue toward 
the center of the wound. As previously 
described, matrix deposition is the process 
by which collagen, proteoglycans and 
attachment proteins are deposited to form 
a new extracellular matrix. Epithelialization 

is the process where epithelial cells around 
the margin of the wound or in residual 
skin appendages such as hair follicles and 
sebaceous glands lose contact inhibition and 
by the process of epiboly begin to migrate 
into the wound area. As migration proceeds, 
cells in the basal layers begin to proliferate to 
provide additional epithelial cells.

Epithelialization is a multi-step process 
that involves epithelial cell detachment and 
change in their internal structure, migra-
tion, proliferation and differentiation.17 The 
intact mature epidermis consists of 5 layers 
of differentiated epithelial cells ranging from 
the cuboidal basal keratinocytes nearest the 
dermis up to the flattened, hexagonal, tough 
keratinocytes in the uppermost layer. Only the 
basal epithelial cells are capable of prolifera-
tion. These basal cells are normally attached 
to their neighboring cells by intercellular 
connectors called desmosomes and to the 
basement membrane by hemi-desmosomes. 
When growth factors such as epidermal 
growth factor (EGF), keratinocyte growth 
factor (KGF) and TGF-α are released dur-
ing the healing process, they bind to recep-
tors on these epithelial cells and stimulate 
migration and proliferation. The binding of 
the growth factors triggers the desmosomes 
and hemi-desmosomes to dissolve so the 
cells can detach in preparation for migra-
tion. Integrin receptors are then expressed 
and the normally cuboidal basal epithelial 
cells flatten in shape and begin to migrate as 
a monolayer over the newly deposited granu-
lation tissue, following along collagen fibers. 
Proliferation of the basal epithelial cells near 
the wound margin supply new cells to the 
advancing monolayer apron of cells (cells 
that are actively migrating are incapable of 
proliferation). Epithelial cells in the leading 
edge of the monolayer produce and secrete 
proteolytic enzymes (MMPs) which enable 
the cells to penetrate scab, surface necrosis, 
or eschar. Migration continues until the  



Principles of Wound Healing 433

epithelial cells contact other advancing cells 
to form a confluent sheet. Once this con
tact  has been made, the entire epithelial 
monolayer enters a proliferative mode and 
the stratified layers of the epidermis are  
re-established and begin to mature to restore 
barrier function. TGF-β is one growth factor 
that can speed up the maturation (differen-
tiation and keratinization) of the epidermal 
layers. The intercellular desmosomes and 
the hemi-desmosome attachments to the 
newly formed basement membrane are also 
re-established. Epithelialization is the clini-
cal hallmark of healing but it is not the final 
event – remodelling of the granulation tissue 
is yet to occur.

Recent studies by Sen, et al. have  
demonstrated that under conditions of 
hypoxia, HIF-1alpha is stabilized which in 
turn induces the expression of specific micro 
RNAs that then down-regulate epithelial cell 
proliferation (1). Therefore it appears that 
there are very complex mechanisms involved 
in the role of oxygen and hypoxia during the 
process of wound healing.

Remodelling
Remodelling is the final phase of the healing 
process in which the granulation tissue 
matures into scar and tissue tensile strength 
is increased (Figure 23.5). The maturation of 
granulation tissue also involves a reduction 
in the number of capillaries via aggregation 
into larger vessels and a decrease in the 
amount of glycosaminoglycans and the water 
associated with the glycosaminoglycans 
(GAGs) and proteoglycans. Cell density and 
metabolic activity in the granulation tissue 
decrease during maturation. Changes also 
occur in the type, amount, and organization 
of collagen, which enhance tensile strength. 
Initially, type III collagen was synthesized at 
high levels, but it becomes replaced by type 
I collagen, the dominant fibrillar collagen 
in skin. The tensile strength of a newly 
epithelialized wound is only about 25% of 
normal tissue. Healed or repaired tissue is 
never as strong as normal tissues that have 
never been wounded. Tissue tensile strength 
is enhanced primarily by the reorganization of 
collagen fibers that were deposited randomly 

Figure 23.5: Remodelling Phase. The initial, disorganized scar tissue is slowly replaced by a matrix that more 
closely resembles the organized ECM of normal skin.
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during granulation and increased covalent 
cross-linking of collagen molecules by the 
enzyme, lysyl oxidase, which is secreted into 
the ECM by fibroblasts. Over several months 
or more, changes in collagen organization in 
the repaired tissue will slowly increase the 
tensile strength to a maximum of about 80% 
of normal tissue.

Remodelling of the extracellular matrix 
proteins occurs through the actions of several 

different classes of proteolytic enzymes pro-
duced by cells in the wound bed at different 
times during the healing process. Two of the  
most important families are the matrix  
metalloproteinases (MMPs) (Table 23.4), and  
serine proteases. Specific MMP proteases 
that are necessary for wound healing are the 
collagenases (which degrade intact fibrillar 
collagen molecules), the gelatinases (which 
degrade damaged fibrillar collagen molecules) 

TABLE 23.4: Matrix metalloproteinases and tissue inhibitors of metalloproteinases

Protein Pseudonym Substrates

MMP-1 Interstitial Collagenase
Fibroblast Collagenase

Type I, II, III, VII, and X Collagens

MMP-2 72 kDa Gelatinase
Gelatinase A
Type IV Collagenase

Type IV, V, VII, and X Collagens

MMP-3 Stromelysin-1 Type III, IV, IX, and X Collagens
Type I, III, IV, and V Gelatins
Fibronectin, Laminin and Pro-
collagenase

MMP-7 Matrilysin
Uterine Metalloproteinase

Type I, III, IV and V Gelatins
Casein, Fibronectin and Pro-collagenase

MMP-8 Neutrophil Collagenase Type I, II, and III Collagens

MMP-9 92 kDa Gelatinase
Gelatinase B
Type IV Collagenase

Type IV and V Collagens
Type I and V Gelatins

MMP-10 Stromelysin-2 Type III, IV, V, IX, and X Collagens
Type I, III, and IV Gelatins
Fibronectin, Laminin and  
Pro-collagenase

MMP-11 Stromelysin -3 Not determined

MMP-12 Macrophage Metalloelastase Soluble and insoluble elastin

MT-MMP-1 Membrane type MMP-1 Pro-MMP-2

MT-MMP-2 Membrane type MMP-2 Not determined

TIMP-1 Tissue inhibitor of Metalloproteinases-1 Collagenases

TIMP-2 Tissue inhibitor of Metalloproteinases-2 Collagenases

TIMP-3 Tissue inhibitor of Metalloproteinases-3 Collagenases
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and the stromelysins (which very effectively 
degrade proteoglycans). An important serine  
protease is neutrophil elastase which can 
degrade almost all types of protein molecules. 
Under normal conditions, the destruct
ive actions of the proteolytic enzymes are 
tightly regulated by specific enzyme inhibi-
tors, which are also produced by cells in the 
wound bed. The specific inhibitors of the 
MMPs are the tissue inhibitors of metallo-
proteinases (TIMPs) and specific inhibitors 
of serine protease are α1-protease inhibitor 
(α1-PI) and α2 macroglobulin. 

Summary of acute wound healing

There are four phases of wound healing:

•	 Haemostasis – establishes the fibrin pro­
visional wound matrix and platelets 
provide initial release of cytokines and 
growth factors in the wound.

•	 Inflammation – mediated by neutrophils 
and macrophages which remove bacteria 
and denatured matrix components that 
retard healing, and are the second source of 
growth factors and cytokines. Prolonged, 
elevated inflammation retards healing due 
to excessive levels of proteases and reactive 
oxygen that destroy essential factors.

•	 Proliferation – fibroblasts, supported by 
new capillaries, proliferate and synthesize 
disorganized ECM. Basal epithelial 
cells proliferate and migrate over the 
granulation tissue to close the wound 
surface.

•	 Remodelling – fibroblast and capillary 
density decreases, and initial scar tissue 
is removed and replaced by ECM that 
is more similar to normal skin. ECM 
remodelling is the result of the balanced, 
regulated activity of proteases.

Cellular functions during the different 
phases of wound healing are regulated by 

key cytokines, chemokines and growth 
factors. Cell actions are also influenced by 
interaction with components of the ECM 
through their integrin receptors and adhesion 
molecules. MMPs produced by epidermal 
cells, fibroblasts and vascular endothelial 
cells assist in migration of the cells, while 
proteolytic enzymes produced by neutrophils 
and macrophages remove denatured ECM 
components and assist in remodelling of 
initial scar tissue.

COMPARISON OF ACUTE AND 
CHRONIC WOUNDS

Normal and pathological responses 
to injury

Pathological responses to injury can result in 
non-healing wounds (ulcers), inadequately 
healing wounds (dehiscence), or in 
excessively healing wounds (hypertrophic 
scars and keloids). Normal repair is the 
response that re-establishes a functional 
equilibrium between scar formation and scar 
remodelling, and is the typical response that 
most humans experience following injury. 
The pathological responses to tissue injury 
stand in sharp contrast to the normal repair 
response. In excessive healing there is too 
much deposition of connective tissue that 
results in altered structure, and thus, loss 
of function. Fibrosis, strictures, adhesions, 
keloids, hypertrophic scars and contractures 
are examples of excessive healing. Contraction 
is part of the normal process of healing but 
if excessive, it becomes pathologic and is 
known as a contracture. Deficient healing is 
the opposite of fibrosis. It occurs when there 
is insufficient deposition of connective tissue 
matrix and the tissue is weakened to the point 
where scars fall apart under minimal tension. 
Chronic non-healing ulcers are examples of 
severely deficient healing. 
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Biochemical differences in the 
molecular environments of healing 
and chronic wounds

The healing process in chronic wounds 
is generally prolonged, incomplete and 
uncoordinated, resulting in a poor anatomic 
and functional outcome. Chronic, non-
healing ulcers are a prime clinical example of 
the importance of the wound cytokine profile 
and the critical balance necessary for normal 
healing to proceed. Since cytokines, growth 
factors, proteases, and endocrine hormones 
play key roles in regulating acute wound 
healing, it is reasonable to hypothesize that 
alterations in the actions of these molecules 
could contribute to the failure of wounds to 
heal normally. Several methods are used to 
assess differences in molecular environments 
of healing and chronic wounds. Messenger 
ribonucleic acid (mRNA) and protein levels 
can be measured in homogenates of wound 
biopsies. The proteins in wounds can be 
immunolocalized in histological sections of 
biopsies. Wound fluids collected from acute 
surgical wounds and chronic skin ulcers are 
used to analyze the molecular environment 
of healing and chronic wounds. From these 
studies, several important concepts have 
emerged from the molecular analyses of 
acute and chronic wound environments.

The first major concept to emerge from 
analysis of wound fluids is that the molecu-
lar environments of chronic wounds have 
reduced mitogenic activity compared to 
the environments of acute wounds.4 Fluids 
collected from acute mastectomy wounds 
when added to cultures of normal human 
skin fibroblasts, keratinocytes or vascular 
endothelial cells, consistently stimulated 
DNA synthesis of the cultured cells. In 
contrast, addition of fluids collected from 
chronic leg ulcers typically did not stimu-
late DNA synthesis of the cells in culture. 
Also, when acute and chronic wound fluids 

were combined the mitotic activity of acute 
wound fluids was inhibited. Similar results 
were reported by several groups of investig
ators who also found that acute wound  
fluids promoted DNA synthesis while 
chronic wound fluids did not stimulate cell 
proliferation.18,19,20

The second major concept to emerge from 
wound fluid analysis is the elevated levels 
of pro-inflammatory cytokines observed in 
chronic wounds as compared to the molecu-
lar environment of acute wounds. The ratios 
of two key inflammatory cytokines, TNFα 
and IL-1β, and their natural inhibitors, P55 
and IL-1 receptor antagonist, in mastectomy 
fluids were significantly higher in mastec-
tomy wound fluids than in chronic wound 
fluids. Trengove and colleagues also reported 
high levels of the inflammatory cytokines 
IL-1, IL-6 and TNFα in fluids collected 
from venous ulcers of patients admitted to 
the hospital.21 More importantly, levels of 
the cytokines significantly decreased in fluids 
collected two weeks after the chronic ulcers 
had begun to heal. Harris and colleagues also 
found cytokine levels were generally higher 
in wound fluids from non-healing ulcers 
than healing ulcers.20 These data suggest 
that chronic wounds typically have elevated  
levels of pro-inflammatory cytokines, and 
that the molecular environment changes to a 
less pro-inflammatory cytokine environment 
as chronic wounds begin to heal. 

The third concept that emerged from 
wound fluid analysis was the elevated levels 
of protease activity in chronic wounds com-
pared to acute wounds.4,22,23 For example, 
the average level of protease activity in mas-
tectomy fluids determined using the general 
MMP substrate, Azocoll, was low (0.75µg 
collagenase equivalents/ml, n = 20) with a 
range of 0.1 to 1.3µg collagenase equiva-
lents/ml.24 This suggests that protease activity  
is tightly controlled during the early phase of 
wound healing. In contrast, the average level 
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of protease activity in chronic wound fluids 
(87µg collagenase equivalents/ml, n = 32) 
was approximately 116-fold higher (p<0.05) 
than in mastectomy fluids. Also, the range 
of protease activity in chronic wound fluids 
is rather large (from 1 to 584µg collagenase 
equivalents/ml). More importantly, the lev-
els of protease activity decrease in chronic 
venous ulcers two weeks after the ulcers begin 
to heal.24 Yager and colleagues also found 
10-fold higher levels of MMP-2 protein, 
25-fold higher levels of MMP-9 protein, and 
10-fold higher collagenase activity in fluids 
from pressure ulcers compared to surgical 
wound fluids using gelatin zymography and 
cleavage of a radioactive collagen substrate.25 
Other studies using immunohistochemical 
localization observed elevated levels of MMPs 
in granulation tissue of pressure ulcers along 
with elevated levels of neutrophil elastase 
and cathepsin-G.26 TIMP-1 levels were 

found to be decreased while MMP-2 and 
MMP-9 levels were increased in fluids from 
chronic venous ulcers compared to mastec-
tomy wound fluids.27 Recently, Ladwig and 
colleagues reported that the ratio of active 
MMP-9/TIMP-1 was closely correlated with 
healing outcome of pressure ulcers treated by 
a variety of protocols (Figure 23.6).28 

It is interesting to note that the major 
collagenase found in non-healing chronic 
pressure ulcers was MMP-8, the neutrophil-
derived collagenase. Thus, the persistent 
influx of neutrophils releasing MMP-8 and 
elastase appears to be a major underlying 
mechanism resulting in tissue and growth 
factor destruction and thus impaired heal-
ing. This suggests that chronic inflammation 
must be decreased if pressure ulcers are to 
heal. 

Other classes of proteases also appear 
to be elevated in chronic wound fluids. 

Figure 23.6: Low Protease/Inhibitor Ratios Correlate with Healing. Low values of the ratio of MMP-9/TIMP-1 
in wound fluids from patients with chronic pressure ulcers correlate with healing of chronic pressure ulcers 
over 36 days of treatment, supporting the concept that high protease/inhibitor ratios prevent healing of chronic 
wounds.
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It has been reported that fluids from skin 
graft donor sites or breast surgery patients 
contained intact α1-antitrypsin, a potent 
inhibitor of serine proteases, very low levels  
of neutrophil elastase activity, and intact 
fibronectin.29 In contrast, fluids from the 
chronic venous ulcers contained degraded 
1-antitrypsin, and 10-fold to 40-fold higher 
levels of neutrophil elastase activity, and 
degraded fibronectin. Chronic leg ulcers 
were also found to contain elevated MMP-2 
and MMP-9, and that fibronectin degrada-
tion in chronic wounds was dependent on 
the relative levels of elastase, α1-proteinase 
inhibitor, and α2-macroglobulin. 30,31

Besides being implicated in degrading 
essential extracellular matrix components 
like fibronectin, proteases in chronic wound 
fluids also have been reported to degrade 
exogenous growth factors in vitro such as 
EGF, TGF-α, or PDGF.1,24,32,33 In contrast, 
exogenous growth factors were stable in 
acute surgical wound fluids in vitro. Sup-
porting this general concept of increased 
degradation of endogenous growth factors 
by proteases in chronic wounds, the average 

immunoreactive levels of some growth fac-
tors such as EGF, TGF-β and PDGF were 
found to be lower in chronic wound fluids 
than in acute wound fluids while PDGF-AB, 
TGF-α and IGF-1 were not lower.32,34

In general, these results suggest that many 
chronic wounds contain elevated MMP and 
neutrophil elastase activities. The physi-
ological implications of these data are that 
elevated protease activities in some chronic 
wounds may directly contribute to the fail-
ure of wounds to heal by degrading proteins 
which are necessary for wound healing such 
as extracellular matrix proteins, growth fac-
tors, their receptors and protease inhibitors. 
Interestingly, Steed and colleagues35 reported 
that extensive debridement of diabetic foot 
ulcers improved healing in patients treated 
with placebo or with recombinant human 
PDGF (Figure 23.7). It is likely that frequent 
sharp debridement of diabetic ulcers helps to 
convert the detrimental molecular environ-
ment of a chronic wound into a pseudo-
acute wound molecular environment.

Figure 23.7: Frequency of Wound Debridement Correlates with Improved Healing. There was a strong 
correlation between the frequency of debridement and healing of chronic diabetic foot ulcers, supporting the 
concept that the abnormal cellular and molecular environment of chronic wounds impairs healing.
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Biological differences in the response 
of chronic wound cells to growth 
factors

The biochemical analyses of healing and 
chronic wound fluids and biopsies have 
suggested that there are important molecular 
differences in the wound environments. 
However, these data only indicate part of 
the picture. The other essential component 
is the capacity of the wound cells to respond 
to cytokines and growth factors. Interesting 
new data are emerging which suggest that 
fibroblasts in skin ulcers which have failed 
to heal for many years may not be capable 
of responding to growth factors and divide 
as fibroblasts in healing wounds. Ågren and 
colleagues36 reported that fibroblasts from 
chronic venous leg ulcers grew to lower 
density than fibroblasts from acute wounds 
from uninjured dermis. Also, fibroblasts 
from venous leg ulcers that had been present 
greater than three years grew more slowly 
and responded more poorly to PDGF than 
fibroblasts from venous ulcers that had been 
present for less than three years. These results 
suggest that fibroblasts in ulcers of long 
duration may approach senescence and have 
a decreased response to exogenous growth 
factors.

FROM BENCH TO BEDSIDE

Role of endocrine hormones in the 
regulation of wound healing

Classical endocrine hormones are molecules 
that are synthesized by specialized tissue and 
secreted into the blood stream which are 
then carried to distant target tissue where 
they interact with specific cellular receptor 
proteins and influence the expression of genes 
that ultimately regulate the physiological 
actions of the target cell. It has been known 
for decades that alterations in endocrine 
hormones can alter wound healing. Diabetic  

patients frequently develop chronic wounds 
due to multiple direct and indirect effects 
of the inadequate insulin action on wound 
healing. Patients receiving anti-inflammatory 
glucocorticoids for extended periods are 
also at risk of developing impaired wound 
healing due to the direct suppression of 
collagen synthesis in fibroblasts and the 
extended suppression of inflammatory cell 
function. The association of oestrogen with 
healing was recently reported by Ashcroft 
and colleagues37 when they observed that 
healing of skin biopsy sites in healthy, 
postmenopausal women was significantly 
slower than in healthy premenopausal 
women. Molecular analyses of the wound 
sites indicated that TGF-β protein and 
mRNA levels were dramatically reduced in 
postmenopausal women in comparison to sites 
from premenopausal women. However, the 
rate of healing of wounds in postmenopausal 
women taking oestrogen replacement therapy 
occurred as rapidly as in premenopausal 
women. Furthermore, molecular analyses 
of wounds in postmenopausal women 
treated with oestrogen replacement therapy 
demonstrated elevated levels of TGF-β 
protein and mRNA that were similar to levels 
in wounds from premenopausal women. 
Aging was also associated with elevated 
levels of MMPs and decreased levels of 
TIMPs in skin wounds, which were reversed 
by oestrogen treatment.38,39 The beneficial 
effects of oestrogen on wound healing could 
be achieved with topical oestrogen and were 
also observed in healthy aged men.40 These 
data indicate the significant interactions that 
can occur between endocrine hormones and 
growth factors in the regulation of wound 
healing.

Molecular basis of chronic non-
healing wounds

Conditions that promote chronic wounds 
are repeated trauma, foreign bodies, pressure 
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necrosis, infection, ischemia, and tissue 
hypoxia. These wounds share a chronic 
inflammatory state characterized by an  
increased number of neutrophils, macro
phages, and lymphocytes which produce 
inflammatory cytokines, such as TNF-α, 
IL-1 and IL-6. In vitro studies have shown 
that TNF-α and IL-1 increase expression 
of MMPs and down-regulate expression 
of TIMP in a variety of cells including 
macrophages, fibroblasts, keratinocytes, and  
endothelial cells. All MMPs are synthesized as 
inactive proenzymes, and they are activated by 
proteolytic cleavage of the pro-MMP. Serine 
proteases, such as plasmin, as well as the 
membrane type MMPs can activate MMPs. 
Another serine protease, neutrophil elastase, 
is also present in increased concentrations 
in chronic wounds, and is very important 
in directly destroying extracellular matrix 
components and in destroying the TIMPs, 
which indirectly increases the destructive 
activity of MMPs.4,22,25,33 Thus, the general 
molecular profile that appears in various 
types of chronic ulcers is (1) increased 
levels of inflammatory cytokines, which 
leads to (2) increased levels of proteases 
and decreased levels of protease inhibitors, 
which (3) degrade molecules that are 

essential for healing, including growth 
factors, their receptors and ECM proteins, 
which (4) prevent wounds from healing 
normally. Nwomeh and colleagues23 further 
describe this common pathway in chronic 
wounds as a self-perpetuating environment 
in which chronic inflammation produces 
elevated levels of reactive oxygen species and 
degradative enzymes that eventually exceed 
their beneficial actions of destroying bacterial 
and debriding the wound bed and produce 
destructive effects that help to establish a 
chronic wound.

Based on these biochemical analyses of 
the molecular environments of acute and 
chronic human wounds, it is possible to  
propose a general model of differences 
between healing and chronic wounds. As 
shown in Figure 23.8, the molecular envi-
ronment of healing wounds promotes mito-
sis of cells, has low levels of inflammatory 
cytokines, low levels of proteases and high 
levels of growth factors and cells capable of 
rapid division. In contrast, the molecular 
environments of chronic wounds generally 
have the opposite characteristics, i.e., the 
molecular environment does not promote 
mitosis of cells, has elevated levels of inflam-
matory cytokines, has high levels of proteases 

Figure 23.8: Comparison of the Molecular and Cellular Environments of Healing and Chronic Wounds. 
Elevated levels of cytokines and proteases in chronic wounds reduce mitogenic activities and response of 
wound cells, impairing healing.
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and low levels of growth factors and cells that 
are approaching senescence.41,24,21 If these 
general concepts are correct, then it may be 
possible to develop new treatment strategies 
which would re-establish in chronic wounds 
the balance of cytokines, growth factors, 
proteases, their natural inhibitors and com-
petent cells found in healing wounds.

Chronic venous stasis ulcers

Mechanisms involved in the creation and 
perpetuation of chronic wounds are varied 
and depend on the individual wounds. In 
general, the inability of chronic venous 
stasis ulcers to heal appears to be related 
to impairment in wound epithelialization. 
The wound edges show hyperproliferative 
epidermis under microscopy, even though 
further immunohistochemical studies 
revealed optimal conditions for keratinocyte 
recruitment, proliferation, and differentiation. 
The extracellular matrix and the expression 
of integrin receptors by keratinocytes that 
allow them to translocate play an important 
regulatory role in epithelialization. After 
receiving the signal to migrate, epidermal 
cells begin by disassembling their attachments 
from basement membrane and neighboring 
cells. They then travel over a provisional 
matrix containing fibrinogen, fibronectin, 
vitronectin, and tenascin and stop when 
they encounter laminin. During this process, 
keratinocytes are producing fibronectin, and 
continue to do so until the epithelial cells 
contact, at which time they again begin 
manufacturing laminin to regenerate the 
basement membrane.

There is evidence that the interaction 
between the integrin receptors on keratino
cytes with the ECM will transform resting 
cells to a migratory phenotype. Integral 
in this transformation is the alteration in 
the pattern of integrin receptors expressed. 
After epithelialization is completed, integrin 

expression reverts back to the resting pattern. 
To further complicate this process, growth 
factors are involved in mediating keratino-
cyte activation, integrin expression, and in 
alterations in the matrix. Growth factors are 
able to differentially affect these processes. 
For example, TGF-β is able to promote  
epithelial migration while inhibiting prolif-
eration. Although TGF-β induces the nec-
essary integrin expression for migration, the 
cells behind those at the leading edge have 
little proliferative ability and so epithelial 
coverage of the wound is inhibited. Some 
chronic wounds may be deficient in TGF-β 
and its receptor.42

Pressure ulcers

Chronic wounds have also been demonstrated 
to have elevated matrix degrading enzymes 
and decreased levels of inhibitors for these 
enzymes. Pressure ulcers, unlike chronic 
venous stasis ulcers, appear to have difficulty 
in healing related to impairment of ECM 
production. Studies have indicated that 
neutrophil elastase present in chronic 
wounds can degrade peptide growth factors 
and is responsible for degrading fibronectin. 
Pressure ulcers have also shown an increase 
in matrix metalloproteinases and in plas
minogen activators in tissue. Chronic 
wound fluids demonstrate increased levels 
of gelatinases MMP-2 and MMP-9. Levels 
of MMP-1 and MMP-8 were also found to 
be higher in pressure ulcers and in venous 
stasis ulcers than in acute healing wounds. In 
addition, several of the endogenous proteinase 
inhibitors were shown to be decreased in 
chronic wounds. Proteinase inhibitors serve 
a regulatory role in matrix degradation by 
containing the matrix-degrading enzymes. 
Factors that promote MMP production or 
activation could counteract the effectiveness 
of proteinase inhibitors, for example the 
destruction of TIMP by neutrophil elastase. 
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The tissue inhibitor level to MMP ratio may 
indicate an imbalance which contributes to 
the wound chronicity.

Future concepts for the 
treatment of chronic 
wounds

Although the aetiologies and the physical 
characteristics for the various types of chronic 
wounds are different, there is a common 
trend in their biochemical profiles. The 
precise pattern of growth factor expression 
in the different types of chronic wounds is 
not yet known; but it has been determined 
that there is generally a decreased level of 
growth factors and their receptors in chronic 
wound fluids. The absolute levels of growth 
factors may not be as important as the 
relative concentrations necessary to replace 
the specific deficiencies in the tissue repair 
processes. For the treatment of chronic 
wounds, Robson43 proposed that growth 
factor therapy be tailored to the deficiency in 
the repair process. Therefore, the effectiveness 
of the therapy is predicated on adequate 
growth factor levels and the expression of 
their receptors balanced against receptor 
degradation by proteases and the binding of 
growth factors by macromolecules such as 
macroglobulin and albumin.

Studies that evaluated topical growth  
factor treatment of chronic wounds, such as 
PDGF in diabetic foot ulcers and EGF in 
chronic venous stasis ulcers, have shown an 
improvement in healing. These findings have 
led to the hypothesis that altering the cytokine 
profile of chronic wounds through the use of 
MMP inhibitors, addition of growth factors, 
and the elimination of inflammatory tissue 
and proteases by debridement would shift 
the wound microenvironment towards that 
of an acute wound, thereby improve healing.

Current treatment strategies are being 
developed to address the deficiencies (growth  

factor and protease inhibitor levels) and 
excesses (MMPs, neutrophil elastase, and 
serine protease levels) in the chronic wound 
microenvironment. Although the more spe-
cific and sophisticated treatments remain in 
the lab at this time such as the new potent, 
synthetic inhibitors of MMPs and the natu-
rally occurring protease inhibitors, TIMP-1 
and 1-antitrypsin, available by recombinant 
DNA technology, the use of gene therapy 
in the treatment of chronic diabetic foot 
ulcers is currently being evaluated in a clini-
cal trial. A phase III clinical trial is under-
way to determine the efficacy of keratinocyte 
growth factor-2 (KGF-2) in the treatment of 
chronic venous stasis ulcers. The treatment 
strategy to add growth factor to a chronic 
wound has been in place for the past several 
years. Regranex®, human recombinant plate-
let derived growth factor (PDGF-BB), has 
been available for the treatment of diabetic 
foot ulcers; demonstrated approximately 
20% improvement in healing compared to  
controls.44 In keeping with the strategy  
to restore a deficient wound environment, 
Dermagraph® and Apligrapf®, engineered 
tissue replacements, have been applied 
to chronic diabetic ulcers.45,46 Although 
Apligrapf® is no longer available, both tissue 
replacements have proven to be effective in 
selected types of ulcers. Other approaches to 
the treatment of chronic wounds have been 
to remove the increased protease levels. This 
is in part the strategy of a vacuum-assisted 
negative pressure wound dressing47 and in 
the recent development of dressings that 
bind and remove MMPs from the wound 
fluid, such as Promogran®.48,49

There have been some advances made 
in the development of new antimicrobial 
dressings and they have been summarized by 
Hamm in a recent publication (Antibacterial  
Dressings in Advances in Wound Care:  
Volume 1; Mary Anne Libert Inc. 2010, 
page 148).
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Another strategy is to use synthetic pro-
tease inhibitors to decrease the activities of 
MMPs in the wound environment. Doxy-
cycline, a member of the tetracycline fam-
ily of antibiotics, is a moderately effective 
inhibitor of metalloproteinases, including 
MMPs and the TNFα converting enzyme 
(TACE). We have demonstrated a reduction 
in inflammatory cell infiltrate and extra-
cellular matrix in chronic pressure ulcers 
treated with 100mg doxycycline twice daily. 
Low dose doxycycline 20mg, twice daily has 
been proven to be beneficial in other path-
ologic states such as periodontitis that are 
characterized by chronic, neutrophil-driven 
inflammation, and matrix destruction.50 In 
the future, treatment of chronic wounds 
may require the use of specific growth fac-
tors or inhibitors unique to the type of 
ulcer or the use of combinations of selective 
inhibitors of proteases, growth factors and 
tissue replacements to act synergistically to 
promote healing. 

As previously described, endocrine  
hormones, such as insulin, glucocorticoids, 
and oestrogen, play important roles in regu-
lating wound healing. Although there is no 
current therapy that specifically addresses the 
molecular deficits created by type I or type II 
diabetes (inadequate insulin levels or insulin 
resistance), systemic insulin injections may 
improve the local wound microenvironment. 
For patients receiving long-term corticoster-
oids, the use of vitamin A seems to facili-
tate wound healing. Studies are underway to 
determine the efficacy of topical oestrogen 
applications on skin aging.

New technologies are being developed to 
help researchers better understand the com-
plex microenvironment that exists in chronic 
wounds.51 A technique called Polymerase 
Chain Reaction (PCR) can amplify the 
microbial DNA that is extracted from the 
wound bed and then be used to identify and 
quantify specific organisms. The test is highly 

sensitive and there is a rapid turn around 
time. The drawback is that PCR can only be 
used to identify known organisms and new 
unknown microbes will not be detected. 

Bacterial biofilms in chronic wounds

Bacterial biofilms are well known in other 
medical specialities to cause a variety of 
chronic pathologies including periodontal 
disease, cystic fibrosis, chronic otitis media and 
osteomyelitis and prosthetic graft infection.52 
Biofilms are characterized by an exopolymeric 
matrix of polysaccharides, proteins and DNA 
synthesized by the multiple bacterial species 
(polymicrobial) comprising the biofilm 
community. Bacteria (and fungi) contained 
within the biofilm matrix are highly tolerant 
to killing phagocytic inflammatory cells 
(neutrophils and macrophages), antibodies, 
and exogenous antibiotics, antiseptics and 
disinfectants. Several factors contribute to the 
increased tolerance of bacteria in biofilms to 
these agents, including reduced penetration 
of large proteins (antibodies) into the dense 
exopolymeric matrix, binding of oppositely 
charged molecules like antibiotics or cationic 
heavy metal ions (silver ion) by negatively 
charged components of the exopolymeric 
matrix, or neutralization of highly reactive 
chemicals like hypochlorous acid (bleach) 
by reaction with molecules comprising the 
exopolymeric matrix. Also, some bacteria 
in mature biofilms become metabolically 
quiescent and these ‘persister cells’ are 
therefore highly resistant to antibiotics that 
disrupt bacterial metabolism. These factors 
contribute to make biofilms extremely 
difficult to kill and clear from chronic 
wounds. Furthermore, components of the 
biofilm matrix and products produced by 
bacteria in the biofilm stimulate chronic 
inflammation, which leads to persistently 
elevated levels of molecules like proteases 
and reactive oxygen species that kill wound 
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cells and damage proteins that are essential 
for healing. 

Assessment of the ‘bioburden’ of wounds 
has traditionally relied upon relatively simple 
microbiology laboratory techniques that typ-
ically provide information on major bacterial 
and fungal species in swabs or biopsies that 
can grow under the nutritional and envir
onmental conditions provided in the lab. 
These assessments of bacteria and fungi in 
wound samples have unquestionably gener-
ated important data that have been used for 
decades to help select therapeutic regimens 
for patients and their wounds. However, 
multiple publications have pointed out that, 
in many patients, measurements of total 
bacterial bioburden (expressed as colony 
forming units per gram of tissue biopsy or 
0-4+ levels of bacterial growth) alone do not 
correlate well with the failure of wounds to 
heal. As shown in Figure 23.9, this led to the 
concept of ‘critical colonization’ or ‘occult 
infection’ to explain the discrepancy, because 
there was an apparent link between micro-
bial bioburden in these wounds and the 
impaired healing in the wounds. However, 
it was not clear what aspect of the relatively 
low total bioburden was ‘critical’ to impair-
ing healing. More thorough evaluation of 

these ‘standard’ clinical microbiology assays 
led to the realization that these assays are 
inherently limited by the rather poor ability 
to culture or identify most of the bacterial 
and fungal species that are actually present 
in an individual chronic wound. In other 
words, standard clinical microbiology assays 
only culture planktonic bacterial and fungal 
species that are able (capable) of growing on 
agar media plates supplemented with general 
nutrients in air at 37ºC. Thus, it is reason-
able to assume that a more complete picture 
of different bacterial species (aerobes, facul-
tative anaerobes, and obligate anaerobes) and 
fungal species in a particular wound should 
improve the ability to assess the microbial 
bioburden on individual wounds and to 
indicate what therapeutic strategies would 
be optimal for each wound. Fortunately, in 
the last few years sophisticated laboratory 
research techniques have been developed 
that allow a more complete assessment of 
bacterial bioburden. Specifically, these tech-
niques demonstrated that a high percentage 
(~60%) of chronic skin wounds have extens
ive bacterial biofilms.53 Using sophisticated 
polymerase chain reaction (PCR) techniques 
Dowd et al54 reported that the bacterial and 
fungal complexity of chronic wound samples 

Figure 23.9: Spectrum of Bacterial Bioburden in Wounds. Contamination and colonization of bacteria usually 
do not substantially retard healing whereas infection clearly impairs healing. The concept of critical colonization 
evolved to describe a condition where levels of planktonic bacteria were not above 106 cfu/gm, but healing was 
impaired. Since biofilm bacteria are not detected by standard clinical microbiology assays, critical colonization 
probably represents a condition when biofilm bacteria are present in wounds and stimulate chronic inflammation 
that retards healing.
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was much greater than previously thought. 
In fact, on average, approximately 60% of 
the bacterial species present in chronic pres-
sure ulcers and around 30% of those present 
in diabetic ulcers were strict anaerobic bacte-
ria, and many bacterial species were present 
that had never been reported in cultures of 
chronic wounds. These data suggest that 
many of the bacteria present in biofilms in 
a chronic wound may never be successfully 
cultured in the standard clinical micro
biology laboratory due to obligate coopera-
tion with other bacteria that create unique 
environmental conditions in a polymicrobial 
community of bacteria in biofilms. A second 
major concept recently reported by Wolcott 
and colleagues55 showed that mature biofilms 
are rapidly re-established in chronic wounds 
following surgical debridement, on the time 
frame of 24 to 72 hours. This indicates that 
sharp debridement opens a time-depend-
ent therapeutic window to prevent the re- 
establishment of mature biofilms that are 
highly tolerant to host inflammatory response 
or to exogenous antimicrobial agents.

The clinical principle that should guide 
‘biofilm-based wound care’ is to reduce plank-
tonic and biofilm bacterial burdens by the 
most appropriate and effective means (surgi-
cal debridement, curettage, irrigation, etc), 
then follow the debridement by covering the 
wound with an effective bacterial barrier dress-
ing, of which there are many types, including 
dressings with microbicidal metal ions (silver), 
quaternary amines, or occlusive films.56 

CONCLUSION

The molecular environment of chronic 
wounds contains elevated levels of inflam
matory cytokines and proteases, low levels 
of mitogenic activity, and cells that often 
respond poorly to growth factors compared 
to acute healing wounds. As chronic wounds 
begin to heal, this molecular pattern shifts to 

one that resembles a healing wound. As more 
information is learned about the molecular 
and cellular profiles of healing and chronic 
wounds, new therapies will be developed 
that selectively correct the abnormal aspects 
of chronic wounds and promote healing of 
these costly clinical problems. With the aging 
of the population, wound care for the elderly 
is becoming a major issue57 The Wound 
Healing Society has developed a series of 
guidelines for ‘Acute Wound Care’, ‘Chronic 
Wound Care’ and ‘Prevention Guidelines’ 
that are free as downloads on their web site 
(http://www.woundheal.org )
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