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28  • Graft Materials Past and Future
Mital Desai, GeorGe HaMilton

Department of Vascular surgery, royal Free Hospital, University  
College, london, UK

tHe PatHoPHysioloGy oF 
GraFt HealinG

the mechanisms of graft healing are of 
central importance in understanding the 
successes and failures of current bypass 
grafts. the tissue response to implantation 
of a prosthetic graft is complex with many 
variable factors involved such as the material 
used, its construction, its porosity, and its 
length. Further important factors relate to 
the interaction between the graft and the host 
artery at the anastomotic areas. Until recently 
graft design focused on simple conduits for 
blood flow which were strong (resistant to 
pressure), biologically inert (resistant to 
biodegradation) and non-leaking. each of 
the major causes of graft failure, luminal 
thrombogenicity, compliance mismatch and 
anastomotic intimal hyperplasia, have the 
potential to be modulated if their aetiology 
could be better understood. a further stimulus 
to study of this area is the still unresolved 
puzzle of man’s inability to endothelialise a 
prosthetic graft beyond the immediate 2 cm 
or so from the anastomosis. 

The peri-anastomotic area

intimal or neointimal hyperplasia is a charac-
teristic healing reaction to vascular injury.1 

in prosthetic grafting the injury typically  
involves the direct trauma of implantation, 
and subsequent exposure of the anastomotic 
areas to haemodynamic stress (compliance 
mismatch, turbulent flow and altered 
shear stress). this results in injury which is 
transmural with endothelial removal, variable 
disruption of the internal elastic lamina and 
medial smooth muscle cells (sMC). 

the three phases of intimal hyperplasia 
will develop quite rapidly with the first being 
proliferation of medial smooth muscle cells 
as soon as 24 hours after injury and lasting 
up to 4 weeks. the second phase of sMC 
migration into the intima starts as early as 
4 days after injury and continues for about a 
month. the final phase is of intimal expan-
sion by the dual action of sMC migration 
and intimal proliferation by deposition of 
matrix proteins such as collagen, elastin  
and proteoglycan. this phase is complex and  
is mostly self-limiting but may continue 
un abated if certain factors are present, (refer 
to Chapter 7 for a more detailed discussion 
of intimal hyperplasia).

the endothelial cell plays a pivotal role via 
its mechanoreceptors which will be sensitive 
to changes in flow and shear stress. High shear 
stress, as found in laminar flow, promotes  
endothelial cell survival and quiescence, 
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and secretion of nitric oxide (no). low or 
changing shear stress direction (turbulent 
flow), promotes endothelial proliferation and 
apoptosis, shape change, and reduced secre-
tion of no. if by a process of flow change 
towards high shear stress and endothelialisa-
tion by regrowth in the injured area, a bal-
ance between stimulatory and inhibitory 
factors is achieved, the drive towards intimal 
hyperplasia will cease. if this balance is not 
achieved because of ongoing factors such 
as lack of endothelial cover, major haemo-
dynamic disturbance such as severe compli-
ance mismatch or turbulent flow with areas 
of stagnation and low shear stress, then the 
drive towards intimal hyperplasia will con-
tinue unabated leading to severe narrowing 
at the anastomosis and graft failure. in pros-
thetic grafting therefore several factors will 
persist which have the potential to promote 
intimal hyperplasia. 

Healing of prosthetic grafts

Healing of prosthetic grafts takes place by 
two main mechanisms, capillary in-growth 
through the graft wall, and growth of 
endothelial cells along the luminal surface 
of the graft from each anastomosis.2 studies 
of prosthetic graft healing in various animal 
models used short lengths of graft, typically 
10cm or less, which readily developed a full 
lining of endothelial cells. in man however, 
endothelialization is restricted to the first 
centimetre or two of the anastomotic regions 
with no evidence of healing having taken 
place beyond this area. this observation 
based on a few individual explants has led 
to the conviction that man is different from 
other species in his inability to endothelialise 
a graft.

The healing process at the anastomosis
endothelialisation along the graft from 
the host artery occurs more aggressively in  
animals compared to man. a review of all 

animal studies found that the average graft 
length was 10 cm with 89% being only 
5.5 cm. in all of these studies therefore it is 
very likely that anastomotic ingrowth was 
the sole avenue for endothelialization.4 

the speed of trans-anastomotic endothe-
lialization differs between species. Many of 
the models used young animals with rapid 
endothelialization but in low porosity grafts, 
endothelialization stopped 2 cm from the 
anastomosis. to set this species difference in 
context, trans-anastomotic endothelializa-
tion is 7–8 times more pronounced in any 
animal compared to man.4 two factors are 
foremost among the possible explanations. 
the first is the exclusive clinical use of low 
or zero porosity grafts. the second is the 
clinical reality of grafting performed in the 
sick and elderly in whom vascular cells are 
known from tissue culture studies to be less 
vigorous.

Graft porosity and permeability

the terms porosity and permeability are used 
interchangeably but have separate meanings. 
Permeability is the property of material 
to allow passage of substances through its 
interstices and classically is measured by the 
volume of water traversing a given area and 
pressure. Porosity refers to the spaces or pores 
that exist within the graft material, which 
depending on the material, may not traverse 
its entire thickness but end blindly. Zilla 
suggests that to facilitate transmural healing 
and endothelialization, graft spaces should be 
wide enough to allow ingrowth of a capillary 
tuft with accompanying fibroblasts or 
pericytes requiring minimum pore diameters 
of 60–80µm.4,9 Currently available grafts, 
even those described as having high porosity 
fail in this regard. (table 28.1)

Macrophages are the predominant 
inflam matory cells found in large num-
bers after implantation and later as part of 
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Table 28.1: The effects of graft porosity 

Low porosity ePTFE grafts: (<45µm of internodal distance)

•	 Low porosity ePTFE grafts (<30mm) no difference in healing between animal and human. 

•	 Within two weeks surface is covered with fibrin and platelet thrombus 15µm thick which over 
following months increases to between 80–300µm. 

•	 Pannus persists for years and is actively thrombogenic. 

•	 Ingrowth of connective tissue is limited to the outer graft wall.

High porosity ePTFE grafts: (>45µm internodal distance)
First layering similar to that of low porosity ePTFE grafts.

•	 In older animals very little ingrowth – luminal thrombus without any cellular component. 

•	 Early and spontaneous endothelialization is found in young animals.

•	 These changes happen as early as 1–2 weeks. 

– patches of endothelial cells and capillary orifices found approximately 100-500µm apart  
which proceed to confluence.3 

– These endothelial cells lie over a layer of arterial smooth muscle cells probably derived from 
pericytes. 

– Stable neo-intima evenly distributed along the surface, as compared to the limited peri-
anastomotic coverage in low porosity grafts. 

– This extensive endothelialization arises from cells reaching the luminal surface by 
transmural ingrowth. 

– In older primate models and also in the dog these developments take longer but only with 
sprouting capillaries reaching the outer third to one half of the graft wall.4

Low porosity Dacron grafts (woven)

•	 Immediately after implantation thin pannus of fibrin and platelets deposited on the surface. 

•	 Thrombus compacts over time and in man stabilises after one year.5

•	 Endothelialization does not happen either in animals or in humans.

– small islands of endothelial cells found after many years in explants in man.6,7

•	 Narrow graft interstices filled with fibrin. 

•	 Foreign body giant cell reaction present. 

•	 Variable spread of some capillaries and fibroblasts into interstitial spaces never breaks through 
the compacted fibrin of the inner lining.8

High porosity Dacron grafts (knitted)

•	 Initial pannus same as woven Dacron but develops to a thickness of 100–120µm increasing to 
500µm by six months. 

•	 In dogs and other animals this inner lining replaced with a confluent layer of smooth muscle 
cells resting directly on the graft surface, covered by endothelium. 

•	 These come from anastomotic ingrowth but in longer grafts endothelialization in the midgraft 
region fails to occur despite partial ingrowth of capillary fibroblasts from the adventitia. 

Prosthetic grafts made of PTFE and Dacron can show a degree of healing by endothelialization 
related to the porosity of the graft. High porosity PTFE grafts promised the best endothelialization 
but were not marketed because of concerns regarding long-term strength and the practical 
difficulties of haemorrhage and serum leakage through the graft wall at implantation.
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a chronic inflammatory process. soon after 
implantation, the interstices become filled 
with fibrin and matrix similar to any early 
wound. Macro phages form part of a normal 
inflammatory response releasing cytokines 
to stimulate migration and proliferation of 
fibroblasts and endothelial cells. in the later 
stages however, macrophages persisting in 
large number may have an adverse effect 
on healing and ingrowth. Consistently the 
outer portion of the graft has high concen-
trations of macrophages and foreign body 
giant cells while the deeper layers lose these 
cells, probably due to the dense impenetra-
ble nature of the fibrinous pannus. Dacron 
seems to be more inflammatory than poly-
tetrafluoroethylene (PtFe) where less giant 
cells develop. 

PHysiCal ProPerties oF 
ProstHetiC Materials

arterial wall pulsatility is due to a combination 
of elastic and viscous components inherent 
in the structure of the artery which can 
therefore be described as being viscoelastic. 
Most commonly this property is measured 
as compliance, defined as the ratio of change 
in diameter over change in blood pressure 
(percentage/mmHg × 10 –2). 

 arterial compliance is complex, having 
both longitudinal and circumferential com-
ponents but only this latter measurement 
is commonly quoted when the elasticity of 
different materials is compared. Compliance 
mismatch has been implicated as an impor-
tant factor in the performance of vascular 
grafts since 1976.10 this mismatch should be 
considered to have two major components, 
tubular and anastomotic.

Tubular compliance

Mismatch of tubular compliance is present 
when there is a significant difference in 

elasticity between the prosthetic graft and 
native artery. a compliant vessel acts as an 
elastic reservoir absorbing energy during 
systole which is released during diastole 
giving an extra push to pulsatile blood flow. 
a rigid conduit will consequently diminish 
this secondary pulsatile energy and reduce 
distal perfusion. at the interface between a 
compliant artery and a non-compliant graft, 
changes in impedance (defined as the resist-
ance to pulsatile flow) will diminish pulsatile 
energy by as much as 60%.11 Furthermore, 
optimal organ perfusion depends on pulsatile 
blood flow with a change from pulsatile to 
static perfusion shown to increase peripheral 
resistance by 10%.12 Finally, at the graft to 
artery interface there is wave reflection of 
pulsatile energy which can lead to increased 
velocity gradients and turbulence. as a result 
of these increased vibratory movements and 
mechanical stresses, endothelial damage and 
intimal hyperplasia occurs.

Anastomotic compliance mismatch

a sutured anastomosis generates a decrease in 
diameter and drop in compliance determined 
primarily by the lack of elasticity of the suture 
material. interrupted sutures give a more 
compliant anastomosis, while a continuous 
technique results in a ring of non-compliant 
suture material – both prolene and PtFe 
sutures are profoundly non-elastic. Within 
a few millimetres on either side of the 
suture line, there is a paradoxical increase 
of compliance which is known as the para-
anastomotic hyper-compliant zone (PHZ)13 
(Figure 28.1). intimal hyperplasia develops 
typically in these areas of hyper-compliance.

The compliance hypothesis of graft 
failure  

Compliance mismatch will lead to a region 
of excessive mechanical stress which can give 
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rise to subtle arterial wall injuries and initiate 
the first phase of intimal hyperplasia. Cyclical 
stretching is known to have a positive influ-
ence on proliferation of vascular smooth 
muscle cells and production of extracellular 
matrix. this increased cyclical stretch at the 
zones of PHZ, will cause proliferation of 
the smooth muscle cells. Finally changes in 
compliance are known to affect flow and shear 
stress. Where there is turbulent flow, there 
will be areas of low shear stress and this is 
known to promote endothelial proliferation, 
apoptosis and reduce production of nitric 
oxide. 

the clinical evidence for the compliance 
hypothesis is largely speculative but analysis 
of the clinical performance of grafts of dif-
fering compliance reveals a positive correla-
tion between compliance and patency rates 
(Figure 28.2). the most commonly used 
prosthetic grafts, namely PtFe and Dacron 
are profoundly rigid over the physiological 
pressure range. a feature of the visco-elastic 
nature of human artery is compliance which 
diminishes with increasing pressure but 
which increases exponentially as the mean 

pressure falls below 80mmHg (Figure 28.3). 
the ideal prosthetic graft should share this 
property. 

syntHetiC GraFts

the history of prosthetic grafts began in 
1952 with successful placement of Vinyon 
–n tubes into the abdominal aorta of dogs, 
and subsequent human implantation in 1954 
in 18 patients.14 an explosion of interest 
followed with synthetic grafts being made 
from various textiles but their major problem 
was loss of tensile strength. two materials 
proved to be resistant namely Dacron and 
PtFe, and because of their bio-durability 
have dominated graft development to this 
day. 

Newer developments of dacron grafts

Heparin coating has been utilised for 
improving biocompatibility of Dacron. 
Besides enhancing the function of heparin-
binding proteins, immobilised heparin also 
potentially reduces Dacron hydrophobicity. 

Figure 28.1: The peri-anastomotic hypercompliant zones (PHZ); compliance at the anastomosis is lower due 
to the suture (#) while compliance is increased compared to the vessel wall several mms from the anastomosis 
(*). This effect further aggravates compliance mismatch in bypass grafting.
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this change in surface chemistry might alter 
the proteins present at the interface, thereby 
influencing biocompatibility independent of 
the biological action of heparin. it has been 
shown that this is associated with exposure 

of the fibrinogen P2 epitope as well as the 
adhesion of monocytes.18 independent of 
the inflammatory response, the hydrophilic 
nature of the heparin coating may affect 
tissue interaction (reduction in cell adhesion, 

Figure 28.2: Correlation between typical compliance and 2 year patency of several graft materials in  
clinical use.

Figure 28.3: Compliance / Pressure curve for compliant polyurethane (CPU), Dacron (DAC), ePTFE (PTFE), 
human femoral artery (ART) and saphenous vein (VEIN). None of the prosthetic materials possess the visco-
elastic properties of artery and vein which give higher compliance at lower pressures. CPU maintains higher 
compliance at all pressures compared to Dacron or ePTFE. 
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growth and mobility). overall, compared to  
human umbilical vein (HUV) or PtFe, 
heparin-bonded Dacron shows significantly 
better primary patency up to 2 years but not 
at 5 years of follow-up.19,20

Modifications and newer 
developments of PTFE grafts

the ePtFe graft has been modified in various 
ways. thin wall ePtFe grafts have improved 
handling characteristics but still have an outer 
wrap to provide strength. stretch ePtFe 
grafts have improved longitudinal rather 
than circumferential elasticity with improved 
handling characteristics but no other benefit 
has been demonstrated in clinical studies. 
external support, either rings or spirals, is 
thought to be beneficial in extra-anatomic 
(axillo-femoral or femoro-femoral) or below 
knee grafts.
a further valuable adjunct shown in 
prospective studies to improve below knee 
PtFe graft patency is an interposition vein 
cuff or patch at the distal anastomosis.24 
this appears to improve the haemodynamic 
situation at the distal anastomosis perhaps 
acting through minimising compliance 
mismatch and improving blood flow.25

several reports indicate potential benefit 
with ePtFe aortic grafts including reduced 
bleeding and a lower risk of infection. the 
only prospective randomised comparison of 
ePtFe and Dacron aortic grafts, however, 
failed to show any difference.26 the suprem-
acy of ePtFe in lower limb bypass grafting 
has been challenged in a randomised trial 
which showed no difference between ePtFe 
and gelatin sealed Dacron.27,28

Heparin bonded PtFe is being widely 
utilised in contemporary practice. two year 
primary patency and limb salvage rates 
were similar to autologous saphenous vein 
in lower limb bypass including below-knee 
locations.29 While there are case series data 

implying that this is an effective material, 
results from randomised trials are awaited.20 

other ePtFe coating materials evaluated 
include citric-acid based biodegradable elas-
tomers. in porcine carotid artery circulation, 
they were found to be biocompatible with-
out causing increased risk of thrombosis, 
restenosis or inflammation.31 these findings 
are important as this may serve as the foun-
dation for a drug eluting vascular graft.

Polyurethane grafts

Polyurethanes are segmented polymers 
initially formulated in the early 60’s to 
provide elasticity in garment materials 
(lycra). these are a very large family of 
which the most important component is 
the urethane group present in repeating 
sequences on the main chain of the polymer. 
this forms the hard segment providing 
strength with the soft segment being the 
other main component (macromonomers 
ranging from hundreds to over a thousand 
Daltons). these hard and soft components 
have a degree of incompatibility which allows 
microphase separation delivering superior 
visco-elastic and compliant properties. 
Polyurethanes also possess excellent blood 
and tissue compatibility and are in extensive 
use in access catheters and linings of various 
prosthetic devices. Clinical experience of  
conventional polyurethane grafts has con-
firmed their superior thrombo-resistance, 
rapid ingrowth of living tissue and reduced 
anastomotic hyperplasia.32

Polyurethane vascular access grafts for 
haemodialysis have several advantages 
including easy cannulation, rapid compres-
sion haemostasis and early use after implant-
ation. Disadvantages with polyurethane 
grafts include poor patency rates when com-
pared with PtFe and most problematically 
hydrolytic degradation leading to aneurysm 
formation. it is this complication that has 
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limited their clinical use despite the advan-
tages of good compliance33-39 (table 28.1).

Newer developments of polyurethane 
vascular grafts
Conventional polyurethanes are bio-
degradable at the soft segment of the polymer 
particularly at the ester and ether groups in 
poly(ester)urethane and poly(ether)urethane. 
recent interest has focused on replacing 
these susceptible groups with other moieties 
in particular polycarbonate, which are more 
hydrolytically and oxidatively stable. one 
polycarbonate polyurethane is currently 
available for clinical use, Corvita (Corvita 
inc) and also a renal access graft composed 
of polyether polyurethane, the Vectra graft 
(Bard inc.). 

Development of a compliant small calibre 
vascular graft has been a major goal of our 
unit. the focus has been on a poly (carbon-
ate) polyurethane with a honeycomb struc-
ture (Figure 28.4) composed of an inner and 
outer skin enclosing a spongy middle wall 

thus maintaining pulsatile flow even after 
peri-graft tissue incorporation. Because this 
polymer lacks ether and ester compounds 
it resists biodegradation as proven both in 
vitro, and in long term implantation study. 
Comparison of this graft with artery, vein, 
Dacron and PtFe shows compliance similar 
to artery at mean pressures of 30–60 mm Hg, 
with very significantly superior compliance 
compared to Dacron or PtFe at all pressures 
(Figure 28.3).42,43 soldani et al have devel-
oped a new compliant small diameter graft 
with a poly (ether) urethane–polydimeth-
ylsiloxane semi-interpenetrating polymeric 
network and featuring two different porous 
wall layers; this showed superior compliance 
and patency rates in comparison with stand-
ard ePtFe, with the ability of remodeling 
in vivo being gradually replaced by natural 
tissue with no sign of calcification.44

in addition, small-diameter poly (epsilon-
caprolactone) grafts represent a promising 
alternative polyurethane with better healing 
characteristics compared with ePtFe giving  

Figure 28.4: Compliant polyurethane graft with external support; The sponge-like structure of the wall allows 
pulsatile elastic recoil even with external support and after perigraft tissue incorporation has taken place.
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faster endothelialisation and extracellular 
matrix formation, accompanied by resistance 
to structural deterioration during remodel-
ling.45,46 

reinforced polyurethane grafts using  
polyester filament yarns knitted into tubu-
lar fabrics to form a composite vascular graft  
have been demonstrated to be 5–10 times 
stronger than pure polyurethane grafts.47 a 
bioengineered microporous polycarbonate-
siloxane polyurethane graft has been devel-
oped for coronary artery bypass grafting. 
Biological agents including heparin and 
sirolimus can be impregnated into its absorb-
able collagen and hyaluronan microstruc-
ture giving a unique drug-eluting graft with 
endothelialisation without excessive intimal 
hyperplasia.48 Biodegradable polymer sys-
tems provide the opportunity for release of 
various growth factors to promote vascular 
wall regeneration. For example, fibroblast 
growth factor-2 (FGF-2) release from poly 
(ester urethane) urea scaffolds amalgamates 
the favourable mechanical properties of 
polyurethanes with the bioactivity of an 
angio genic protein.49

nitric oxide releasing polyurethanes 
reduce platelet adhesion and vascular smooth 
muscle cell growth, while stimulating  
endo thelial cell growth.50 Furthermore, the  
elastomeric copolymer, poly(1,8-octanediol 
citrate), with mechanical and degradation 
prop erties suitable for vascular tissue engi-
neering, decreases platelet adhesion.51 in 
vitro studies evaluating the biocompatibility 
of these mate rials confirm their potential for 
vascular graft coatings.52

although tissue-engineered vascular 
grafts based on biodegradable polymers have 
yielded promising results, some drawbacks 
exist. Challenges of cell sourcing are com-
pounded by long culture periods that range 
between 2 and 6 months, and the prolifera-
tive capacity of cells isolated from elderly 
patients is lim ited. 

Biological vascular grafts

Biografts, vascular grafts made from 
biological sources, have been used over 
many years. allografts (sourced from the 
same species) in current use are primarily 
umbilical and saphenous vein. Xenografts 
(derived from other species) have a long 
history with disappointing results and there 
is no xenograft currently in clinical use.

the major problems with biografts are 
biodegradation and immunogenicity which 
can be counteracted by chemical treatment 
and cryopreservation. the first clinical use 
of an allograft was in 1948 in the treatment 
of aortic coarctation.53 arterial allografts 
harvested from cadavers were first used in 
the 1960s to perform lower limb bypass but 
these were prone to significant degeneration, 
aneurysm formation and wall calcification.54

improved cryo-preservation with protect-
ant solutions to prevent intra-cellular ice crys-
tals on thawing, allowed the development of 
tissue banks to provide a ready source of allo-
grafts. Clinical use of cryopreserved allografts 
in the 1960s showed good short term func-
tion and the attractive possibility that cryop-
reservation might reduce immunogenicity.55 
Further clinical experience however revealed 
disappointing one year patency rates of less 
than 50%.56 the stable functioning of arte-
rial and venous grafts in human liver trans-
plantation suggests that immuno-suppressive 
therapy will improve the function of these 
grafts. However the associated complications 
probably make this approach unacceptable. 

Xenografts were introduced in the 1970s, 
most commonly the bovine carotid artery. 
Various chemicals including glutaraldehyde 
were used to cross link collagen to provide 
stability and reduced immunogenicity. Clini-
cal success rates of these xenografts were poor 
with biodegradation after 6 months due to 
progressive breakdown of the collagen cross 
linkages. 
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the human umbilical cord vein was 
developed as a bypass graft by Drs irving 
and Dardik.57 this was stabilised using glu-
taraldehyde supported by an external Dacron 
mesh and used specifically in lower limb 
bypass grafting but were prone to aneurysmal 
degeneration. Deficiencies in the manufactur-
ing process were corrected in the late eighties 
with apparent significant reduction of this 
problem. the graft, however, never regained 
popularity despite impressive results in a large 
series of 1,275 cases (five year secondary pat-
ency rates of 71% for femoro-popliteal and 
56% for femoro-crural bypass).58

Newer developments of biological 
vascular grafts
Bacterial cellulose is a novel vascular 
material with the potential to reduce 
surface thrombogenicity. in vitro it had the 
slowest activation of coagulation cascade 
as compared to standard synthetic graft 
materials.59 Bacterial cellulose has the added 
advantage of promoting in situ vascular 
tissue regeneration,60 so it has potential as a 
scaffold for small bore vascular grafts. 

a fibrin scaffold supported by a poly 
lactide mesh, and seeded with autologous 
arterial-derived cells prior to dynamic con-
ditioning has been used to develop condi-
tioned grafts with good mid-term patency 
and no evidence of thrombosis, aneurysm 
formation or calcification in vivo.61 they also 
show a confluent monolayer of endothelial 
cells lining the inner surface of the graft. the 
integrated biodegradable polylactide mesh 
has also been used to provide temporary 
mechanical support during the initial period 
of tissue development, while an autologous 
fibrin cell carrier system acts as the basis  
of remodeling the entire graft into a viable 
tissue structure.62 

the in-vivo evaluation of cryopreserved 
human umbilical arteries treated with poly  
(styrene sulfonate)/ poly (allylamine hydro-

chloride) has demonstrated a high graft  
patency after 3 months of implantation.63 an 
allogenic vascular graft has also been devel-
oped from a decellularised scaffold prepared 
from canine carotid arteries and modified 
through heparin immobilisation and vascular 
endothelial growth factor (VeGF) coating.64 

l’Heureux et al. have demonstrated the 
feasibility of assembling arterial bypass grafts 
exclusively from autologous cells in primate 
models.65 no synthetic or exogenous mater-
ials were used; instead, the vessels were  
created with the use of autologous fibroblasts 
and endothelial cells harvested from a small 
biopsy specimen of skin and superficial vein. 
in vivo results indi cated that the grafts were 
antithrombogenic and mechanically stable 
for 8 months, with histology and micros-
copy displaying complete tissue integration, 
regeneration of a vascular media, as well as 
elastogenesis and a collagen fibre network.

ProstHetiC GraFt 
MoDiFiCations

Modifications to reduce graft 
infection

Graft infection is a devastating complication 
particularly in the modern era of increasing 
methicillin-resistant Staphlococcus aureus 
(Mrsa) infection. several different strategies 
have been employed to reduce the risk of 
infection. the simplest approach is soaking 
grafts coated with albumin, collagen or gelatin 
with antibiotics, in particular rifampicin.66 
Gelatin sealed grafts prebonded with two 
antibiotics have shown resistance to infection 
by Staphylococcus aureus in a dog model.67  
in vitro studies show that antibacterial levels 
of rifampicin will remain present for 48 to 
72 hours with reduced risk of graft infection 
to bacterial challenge.68

the clinical experience of rifampicin 
bonded Dacron grafts relates to two random-
ised controlled trials the first from italy in 
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aorto-femoral grafts and the second from the 
United Kingdom in extra-anatomical bypass 
grafts. there was no long term benefit in 
terms of reduced graft infection rate found 
although early wound infection rates were 
found to be significantly reduced.69,70 How-
ever, these grafts should be used with caution 
because it has been noted that in approxi-
mately 30% of cases, microbial organisms 
isolated from infected grafts are resistant to 
rifampicin.71

a further approach to reducing infec-
tion is the binding of triclosan (irgason) to 
grafts. this is an antimicrobial with broad 
spectrum activity which in experimental 
studies appears to bind effectively to dacron 
grafts for four weeks.72 silver bonded PtFe 
grafts have been shown experimentally to 
reduce the risk of infection, and are currently 
available for clinical use73 (interguard silver 
Graft. interVascular, France). However, in 
vivo comparison in a dog model between 
rifampicin /gelatin sealed and silver/collagen 
coated Dacron grafts, revealed significantly 
greater resistance to infection for rifampicin 
bonding.74 silver-coated grafts did not dif-
fer from standard grafts and had no effect 
on reducing graft infection in a recent 
retrospect ive study.75

the other experimental strategies pro-
posed include direct pre-treatment with 
soaking prosthetic grafts in antibiotic solu-
tion (Daptomycin) which has been dissolved 
in a fibrin sealant.76 at present, all graft 
modifications intended to reduce the risk of 
infection in arterial reconstruction, although 
promising, lack evidence of effectiveness.77

Modifications to improve patency

Carbon has been used because of its lack 
of reactivity and potential reduction of 
luminal thrombogenicity with flowing 
blood. experimental studies have suggested 
improved primary and secondary patency 

rates.78 Prospective randomised comparison 
of carbon impregnated PtFe grafts with 
standard PtFe found no significant 
difference at 2 years but with a trend for 
improved patency in the carbon graft.79 

as shown earlier heparin bonded Dacron 
shows only short-term advantage in improv-
ing primary patency. a commercially available 
graft is the Fluoropassiv (terumo-Vascutek), 
a Dacron graft coated with a fluoropoly-
mer which has been shown in experimental  
studies to cause less tissue reaction and to 
have reduced thrombogenicity.80 there are 
no clinical data available to confirm any  
beneficial effect of this graft. 

Nanocomposite Grafts

recent developments in the field of nano-
te chnology have facilitated vascular tissue-
engi neering mimicking the nanostruc ture 
of native vessels. one such application is 
electro spinning of synthetic polymers into 
nanofibers.81-84 the advantages of forming 
scaffolds with high porosity as well as 
high surface area-to-volume ratio, thus 
simulating the dimensions and structure of 
native collagen and elastin fibrils holds great 
promise for future off-the-shelf-grafts.85,86

our group has developed a family of 
nanocomposite polymers-based on poly-
hedral oligomeric silsesquioxanes (Poss) 
and poly (carbonate-urea) urethane (PCU). 
Poss-PCU has been used to develop a small 
diameter bypass graft which shows match-
ing viscoelastic properties to human arter-
ies.87 Furthermore, a biofunctionalised small 
diameter graft based on this nanocompos-
ite polymer demonstrates the potential for  
relatively rapid endothelialisation from pro-
genitor cells extracted from peripheral blood 
in an in vitro model.87 an extrusion-phase-
inversion technique is used to make uniform 
walled porous conduits from Poss-PCU. 
these elastic microporous grafts demonstrate 
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favourable mechanical integrity and are 
currently undergoing in-vivo evaluation of 
durability and healing properties.88 

other groups have utilised the strength 
and flexibility of carbon nanotubes as  
fillers to enhance base polymer properties but 
although these composite polymers decrease 
thrombogenicity, toxicity of carbon nano-
tubes remains a concern.89,90

enDotHelial Cell seeDinG 

achieving endothelial cell coverage is 
impor tant in improving graft performance. 
endothelial cells have been extracted from 
three main sources – vein, subcutaneous fat 
and omentum.91 Further potentially promising 
sources are from bone marrow, circulating 
blood and mesenchymal stem cells. there is 
good experimental evidence to support the 
benefit of endothelial cell seeding of bypass 
grafts. these have better patency rates, are 
less thrombogenic, will tolerate low flow 
states and have been shown to have normal 
endothelial cell activity.92 in addition seeded 
grafts have been shown to resist bacteraemic 
infection in animal models.93-95

Single stage seeding

single stage seeding requires sourcing 
of larger numbers of endothelial cells to 
allow immediate seeding of the graft at 
implantation. With this method seeding is 
not expected to be fully confluent but rather 
is achieved over the early post-implantation 
period by endothelial cell replication. 
Herring and his colleagues in 1978 were 
the first to report the seeding of Dacron 
grafts in a dog model and showed that 
PtFe seeded more rapidly and completely 
than Dacron.9,96 this group confirmed in 
an explant from a patient that endothelium 
was present in the mid-portion of the graft 
some months after implantation.97,98 a 

further clinical study demonstrated reduced 
thrombogenicity in the endothelialised limb 
compared to the non-seeded contralateral 
limb of aorto-bi-femoral grafts.99 the major 
disadvantage of one stage seeding is a lack of 
sources of sufficient cells to allow immediate  
seeding.

Two stage seeding

two stage seeding involves harvesting a 
modest quantity of endothelial cells typically 
from a vein, and culturing sufficient 
numbers for confluent seeding. a group 
in Vienna have performed the largest and 
the most detailed study in man using two 
stage seeding with endothelial cells harvested 
from cephalic or jugular veins.100 the ePtFe 
grafts were pre-coated with fibrin glue and 
then seeded with the patient’s own cultured 
endothelial cells. this group’s experience is 
of 213 patients with patency for below knee 
reconstructions of 68% at 5 and 7 years, and 
65% at nine years.101 endothelial cell seeding 
has been successful in coronary artery bypass 
with a recent trial using two stage seeding 
of ePtFe reporting 90.5% patency rate at 
28 months.102 these early clinical results are 
very promising but two stage cell seeding 
is cumbersome, and not easily applicable 
particularly in emergency revascularisation. 

VasCUlar tissUe 
enGineerinG

there are three major approaches to creating 
blood vessels. the first is in the addition of 
vascular cells to synthetic polymers of which 
seeding of existing graft materials forms the 
most basic example. the second approach 
is in the development of bioresorbable or 
biodegradable grafts made of polymers 
which will be absorbed to varying speeds and 
degrees with eventual replacement by host 
tissue. the third approach is that of growing 
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new grafts in tissue culture made from 
endothelial cell, vascular smooth muscle cell, 
collagen and matrix. 

Non-degradable polymer and cell 
seeding 

Deutsch and colleagues in Vienna showed 
in explants of endothelial cell seeded PtFe 
grafts that a neo-media develops between the 
prosthesis and the endothelium throughout 
the entire length of the graft.103,104 the cells 
in the neo-media contained actin filaments 
and a true internal elastic membrane 
had developed to separate them from the 
endothelial layer. Probably the original 
inoculums of endothelial cells obtained 
from cephalic or jugular vein had been 
contaminated with some vascular smooth 
muscle cells or pericytes. there has been 
much debate in the past as to whether 
endothelial cells for seeding should be pure 
or whether there would be benefit from 
inclusion of vascular smooth muscle cells or 
pericytes. this finding of a neo-media with 
a well developed internal elastic membrane 
providing an inner structure very similar 
to that of a normal artery lends support to 
the argument that co-culturing of cells of 
vascular origin would be beneficial.

the reintroduction of high porosity 
prosthetic grafts (i.e. pores >90µm) merits 
further study. impermeability at the time 
of implantation using established impreg-
nation methodology avoids the risk of 
haemorrhage. once the sealant is absorbed, 
capillary tuft ingrowth with development of 
a media and intima may result. an alterna-
tive approach would be to develop highly 
porous prosthetic grafts pre-seeded with vas-
cular smooth muscle cells, collagen, and with 
a seeded inner layer of endothelial cells. the 
newer bio-resistant polyurethane polymers 
are promising materials for development of 
such hybrid grafts.

Bioresorbable and biodegradable 
polymers

the concept of degradable or absorbable 
graft materials providing initial vessel 
integrity but in time replaced by the host’s 
own tissues has been under development for 
some time.105,106

Polyglycolic and polylactic acid are the 
two bioresorbable polymers which have 
been most fully investigated. in addition to 
polydioxanone, these are the polymers which 
have FDa approval and for this reason are 
the preferred materials.107 Polyglycolic acid 
is susceptible to in-vivo hydrolysis after 
2–4 weeks. Polylactic acid is more resistant to 
hydrolysis in-vivo and in the form of, l-poly-
lactic acid, has high mechanical strength. Co- 
polymers of these two substances are in 
wide use as absorbable sutures and are  
better known as vicryl and polyglactin 910 
(PG910). Poly dioxanone, otherwise know 
as PDs, is a much more slowly reabsorbed 
compound. the first fully bioresorbable  
vascular graft was made from sheets of vicryl 
but became aneurysmal.108

Greisler’s group in Chicago has contrib-
uted significantly in this field initially mak-
ing grafts from woven polyglycolic acid for a 
rabbit model.109,110 Four weeks after implant-
ation a confluent layer of endothelial cells 
with a medial layer of myofibroblasts sur-
rounded by dense collagen fibres was found. 
ten percent became aneurysmal early on 
probably because of reabsorption before ade-
quate ingrowth of host tissue. Grafts made 
of polydioxanone (PDs) were more slowly 
reabsorbed for up to six months. similar tis-
sue ingrowth as in the previous experiments 
with full endothelialisation over a neo-media 
was found. these were strong grafts able to 
withstand very high static bursting pressures 
(600-2000 mmHg).111

Greisler’s group then reported a compos-
ite bioresorbable graft of 74% PG910 and 



Mechanisms of Vascular Disease524

26% PDs which at one year in a rabbit aorta 
model had 100% patency with no aneurys-
mal degeneration. Complete reabsorption 
of PG910 took place within 2 months and 
PDs within 6 months. these arteries with-
stood up to 800mmHg of pulsatile pres-
sure.112 Composite partially resorbable grafts 
were next looked at in two grafts, the first 
constituted of 69% PG910 and 31% poly-
propylene, and the second of 70% PDs and 
30% polypropylene. in a dog aorto-iliac 
interposition model, one year patency rates 
of 90% for the former graft and 86% for 
the latter graft were found.113 Despite these 
experimental successes, so far no bioresorb-
able small diameter graft has been produced 
for human implantation.

Combined bioresorbable and tissue 
engineered grafts

later work focused on the concept of a 
graft composed of autologous vascular cells 
with a bioresorbable scaffold providing 
sufficient strength during tissue ingrowth 
and replacement.114 the first report was of 
smooth muscle cell seeding onto polylactic 
acid scaffold in a rat model where a 
neomedia with vascular orientation of cells 
was found.115 langer and Vacanti reported 
the successful development of a tubular 
scaffold made of woven polyglactin as an 
outer layer and an inner layer of non-woven 
polyglactin onto which autologous cells were 
seeded. after seven days of culture the vessels 
were implanted into sheep pulmonary artery 
with 7 grafts remaining patent for up to 
3 months. the polymer scaffold was found 
to be replaced as expected by host cells and 
matrix, but these grafts dilated.

a more robust graft was produced using 
a composite scaffold of polyglycolic acid as 
an inner layer designed to degrade by two 
months, and polyhydroxy alkanoate as an 
outer non-porous layer, designed to degrade 

much more slowly. this graft was implanted 
into sheep abdominal aorta with full pat-
ency and no dilatation being found at up to  
150 days and complete replacement by host 
tissue. a normal endothelial layer and a  
vascular media containing collagen and elas-
tin were found.116,117

surface modulation of polyglycolic acid 
polymer with 1n naoH increases absorp-
tion of seeded smooth muscle cells.118 the 
rGD peptide, a component of fibronectin, 
is known to promote endothelial cell attach-
ment and also influence cell differentiation.119 
Much work is now focused on the incorpora-
tion of rGD peptide sequence onto polymer 
surfaces to enhance endothelial attachment. 
a further promising approach is the incorp-
oration of biologically active substances, for 
example vascular endothelial growth factor 
and basic fibroblast growth factor in order 
to stimulate and modulate the differen-
tiation of the seeded cells into functional  
phenotypes.120

Mechanical conditioning of seeded 
vascular cells

the exposure of smooth muscle cell seeded 
scaffolds to physiological and pulsatile 
pressures results in orientation into multi-
layers with collagen fibrils in the extracellular 
matrix.121 elastin and proteoglycans are 
also released into the extra-cellular matrix 
after 8 to 16 weeks of exposure to arterial 
circulation.122 Furthermore conditioning 
of seeded endothelial cells by exposure to 
pulsatile flow and shear stress has been shown 
to improve proliferation and adhesion.123

Alternative scaffolds

Biocompatible and biodegradable synthetic 
polymers made by recombinant Dna 
technology are under development. examples 
include the elastic protein-based polymers 
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such as poly (GVGP), a repeating sequence 
in the elastin molecule. Carboxy-amides are 
chemical moieties which will hydrolyse at 
varying times depending on the amino acid 
sequence. By selection of carboxy-amides 
for inclusion in the structure of the poly 
(GVGPV) polymer a planned degradation rate 
can potentially be incorporated. Differential 
degradation, resorption and replacement by 
host tissue of several layers of a graft can 
therefore be achieved while maintaining its 
structural integrity.124 these polymers have 
excellent elasticity and proven optimised cell 
attachment due to incorporation of rGD 
sequences.125 

Decellularised vessels have well pre-
served collagen fibres theoretically ideal 
for ingrowth. Good long term results from 
allogenic decellularised biological scaffolds 
have been reported with minimal immuno-
reactivity126 but this initial promise was not 
maintained in further experimental studies. 
Xenografts would be practical for human 
implantation but unfortunately even decel-
lularised scaffolds maintain a significant 
degree of immunogenicity and inflamma-
tory response sufficient to destroy elastin.127 
endothelial cell seeding with autologous 
cells has not been successful in reducing their 
immunogenicity and thrombogenecity.128 
although a very promising concept the con-
tinuing problems of antigenicity make their 
clinical application unlikely. 

a poly-l-lactide/poly-epsilon-caprolactone  
scaffold releasing heparin by a combina-
tion of electrospinning and fused deposition 
modeling technique has been used. this par-
ticular scaffold design allowed the generation 
of both a drug delivery system amenable to 
surmount thrombogenic issues and a micro-
environment able to induce endothelial dif-
ferentiation.129 silk-based fibroin grafts have 
been developed and they provide excellent 
patency when implanted in smaller vessels.130 
the fibroin graft gradually degraded with 

formation of an artery-like structure by 
endogenous endothelial cells and smooth 
muscle cells. Fibroin may hold the promise 
to generate vascular prostheses for smaller-
diameter arteries. 

Genetically-modified cells have also been 
considered for the construction of vascular 
replacements. For example, genetically- 
modified endothelial cells over-expressing  
tissue pl asminogen activator (t-Pa) and  
urokinase-type Pa, or bone marrow mesen-
chymal stem cells transduced to express 
endothelial nitric oxide synthase (enos), 
would promote cell repopulation of the graft 
and help to eliminate thrombotic events.131 
Growth-regulating substances, growth fac-
tors or antimigratory and antiproliferative 
drugs have been incorporated directly into 
prosthesis wall or delivered through drug-
eluting stents, catheters and perivascular  
collars.132,133 artificial materials releasing 
nitric oxide (no) are also being developed, 
consisting of synthetic polymers incorpor-
ated with no donors such as diazenium-
diolates and s-nitrosothiols.134

Tissue-engineered grafts

Blood vessels made purely from biological 
materials and vascular cells have the 
major potential advantage of a vaso-
active biological conduit which can both 
heal and remodel according to changing 
environment. in Japan Hiraj and Matsuda 
developed a graft from canine vascular 
cells and collagen which proved resistant 
to physiological pressures only with a 
dacron backbone.135 in 1998 the Quebec 
group reported the first successful totally 
biological graft made from cultured human 
umbilical vein cells which withstood 
physiological pressures.136 the addition 
of a period of pulsatile culture following 
an initial static culture of smooth muscle 
cells and collagen reliably produces grafts 
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which are strong and resistant to supra-
physiological burst pressures.137,138

all work in this field has been based on 
young cells. the successful translation of 
these promising developments to clinical 
application requires proof that adult or senile 
vascular cells will behave similarly. such cells 
will have to come from each individual vascu-
lar patient until such time as pluri-potential, 
non-immunogenic cells can be sourced. 

GraFt Materials For aortiC 
enDoGraFts

the endografts in current clinical use are 
mainly made from either thin woven polyester 
(Dacron) or ePtFe. sac enlargement after 
endovascular aneurysm repair (eVar), 
without evidence of endoleak, has been 
attributed largely to endotension or material 
porosity. the first-generation Gore excluder 
graft allowed serous transudate contributing 
to continued sac pressurization. aneurx 
grafts had a higher incidence of microleaks, 
or persistent transgraft blood flow, occurring 
through the thin graft material. the excluder 
and aneurx devices modified their graft 
material in 2004 with subsequent reduced 
permeability.139 stent and graft materials 
have different mechanical properties and 
any repetitive movement between them may 
damage the fabric. stronger sutures and 
tighter weaves have made current designs 
more stable, but none is yet free from fabric 
graft failure.140 

research has also been targeted to improve 
the delivery profile of endografts, which is a 
main limiting factor in utilisation of these 
grafts for thoracic aneurysms. one such 
approach is to use thin-film nitinol (niti) 
and early in vitro results have confirmed its 
feasibility.141 this device is presently being 
tested in animal models.

With the availability of new materi-
als, reducing mismatch in aortic stiffness 

and compliance may become important 
in future eVar grafts. indeed, some dif-
ferences in presently used materials have 
already been observed by van Herwaarden 
and colleagues finding differences in compli-
ance between Gore excluder and Medtronic 
talent stent-grafts at the level of aneurysm 
neck.142 in the next decade, we can expect 
continuing improvements in device design. 
Plasmid-loaded cationized gelatin (CG) 
hydrogel-coated stent grafts offer transduc-
tion of therapeutic genes into the vascular 
wall facilitating the biologic healing between 
the aorta and graft.143 novel graft materi-
als such as Poss-PCU have the potential 
to deliver compliance, antithrombogenicity, 
biocompatibility and spontaneous endothe-
lialisation to provide better configurations 
and reduce the risk of complications. 

tHe FUtUre

over the next 5 years improved prosthetic  
grafts will become available with the 
introduction of biodurable and compliant 
materials. lumen modulation by anti-
coagulant molecules, cell ligands and growth 
factors will further enhance performance thus 
adding thromboresistance to compliance. 
attachment technology will allow Dacron 
and PtFe to be similarly modified although 
these can never be sufficiently compliant to 
abolish compliance mismatch.

new compliant graft materials will be 
developed using novel spinning technologies 
to incorporate collagen and elastin polymers 
resistant to degradation. the technology for 
totally bioresorbable grafts is already in clini-
cal use for paediatric cardiovascular recon-
struction and its applicability to adult use is 
under study. similarly the development of 
totally autologous tissue engineered grafts 
is in its infancy. endothelial cell seeding is 
clinically proven but cumbersome. With 
ongoing development to match as closely as 
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possible the mechanical characteristics and 
functions of normal human arteries there 
is real potential for new graft development 
within the next decade.
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