Introduction:

- Lentiviral (LV) vectors are a promising option for treating cystic fibrosis airway disease by delivering a functional copy of the CFTR gene into airway epithelial cells.
- The choice of vector pseudotype is important to ensure that the correct cells and locations are effectively targeted. The VSV-G and HA envelope proteins target airway receptors on the basolateral and apical surfaces, respectively.
- Conditioning the airway surface with the compound lysophosphatidylcholine (LPC) prior to LV vector delivery may increase transduction efficiency by facilitating access to the basolateral surface.

Aims:

- Use LV vectors carrying either the LacZ or Luciferase (Luc) reporter genes, and pseudotyped with VSV-G or HA, to determine:
 1. Which pseudotype is more effective.
 2. The effect of LPC airway conditioning on the transduction levels.

Methods:

- Normal C57Bl/6 female mice were anaesthetised and intubated.
- The airways of mice were conditioned with 10 µl of PBS (control, n=12) or LPC (n=12), followed one hour later by two 15 µl aliquots of VSV-G (n=12) or HA (n=12) pseudotyped LV vector containing either the Luc or LacZ reporter genes.
- One week post-instillation, mice that received the LacZ reporter gene were humanely killed via CO₂ asphyxiation and their lungs inflation fixed. LacZ transduction was assessed en face after histochemical (X-gal) analysis.
- Bioluminescence imaging (BLI; Xenogen, IVIS) was performed at 1 week, 1, 2, 3, 4 and 5 months after LV instillation to assess Luc gene expression levels in the lung airways over time.

Results:

- En face LacZ staining assessment of mouse lungs indicated that airway conditioning with LPC resulted in stronger initial transduction levels than PBS, independent of which pseudotype was used (Fig 1).
- In the VSV-G treated mice, LacZ transduction was typically more pronounced in the trachea and upper bronchiolae, regardless of whether the conditioning was PBS or LPC (Fig 1a & b).
- In the HA treated mice, there was a difference in the transduction efficiency observed between PBS and LPC, with higher levels of transduction in the trachea and bronchiolae with LPC conditioning (Fig 1d) compared to PBS (Fig 1c).

Conclusion:

- At one week the Luc and LacZ data both suggest that the VSV-G pseudotype is more effective at transducing airway cells than the HA pseudotype.
- The long term Luc results suggest that conditioning the airways with LPC prior to LV vector delivery does not increase the total lung transduction level with either pseudotype.
- Monthly Luc imaging will be continued to observe total lung gene expression levels over time. LacZ cell counts and histological analysis will be used to determine the location and type of cells transduced.

Acknowledgements

Channel 7 Children’s Research Foundation and Cure4 Cystic Fibrosis Foundation.