Please bring this handout with you to the session

Engaged Learning and Teaching through Student Partnership
Mick Healey
Healey HE Consultants; www.mickhealey.co.uk; mhealey@glos.ac.uk

Presentation to i-MELT Conference, University of Adelaide
11-13 December 2017

This is work in progress and readers are invited to send us their own examples. The references, full set of case studies and bibliography are available on our website (above) under resources.

Structure of presentation
A. The nature of students as partners and conceptual frameworks
B. Case studies I: Students as partners
 1. Learning, teaching and assessment
 2. Subject-based research and inquiry
 3. Scholarship of teaching and learning (SoTL)
 4. Curriculum design and pedagogic consultancy
 5. Integrated approaches
C. Case studies 2: Engaging students in partnership through research and SoTL
 1. Subject-based research and inquiry
 2. Scholarship of teaching and learning (SoTL)
D. Action planning

A. Context and frameworks

Table 1: Partnership principles and values
Drawing on the literature on successful partnership and engaged student learning, core values which underpin successful partnership in learning and teaching are suggested. The relative importance of each of these values may vary in different contexts, and there may be additional values you want to include for your partnerships:

- **Authenticity**: the rationale for all parties to invest in partnership is meaningful and credible.
- **Honesty**: all parties are honest about what they can contribute to partnership and about where the boundaries of partnership lie.
- **Inclusivity**: there is equality of opportunity and any barriers (structural or cultural) that prevent engagement are challenged.
- **Reciprocity**: all parties have an interest in, and stand to benefit from working and/or learning in partnership.
- **Empowerment**: power is distributed appropriately and ways of working and learning promote healthy power dynamics.
- **Trust**: all parties take time to get to know one-another and can be confident they will be treated with respect and fairness.
- **Courage**: all parties are encouraged to critique and challenge practices, structures and approaches that undermine partnership, and are enabled to take risks to develop new ways of working and learning.
- **Plurality**: all parties recognise and value the unique talents, perspectives and experiences that individuals contribute to partnership.
- **Responsibility**: all parties share collective responsibility for the aims of the partnership, and individual responsibility for the contribution they make.

Source: Higher Education Academy (2015)
Table 2: Five propositions for genuine ‘students as partners’ practice

1. Foster inclusive partnerships
2. Nurture power-sharing relationships through dialogue and reflection
3. Accept partnership as a process with uncertain outcomes
4. Engage in ethical partnerships
5. Enact partnership for transformation

Figure 2. Students as partners in learning and teaching in higher education: An overview model

Figure 3: The nature of student research and inquiry

<table>
<thead>
<tr>
<th>STUDENTS ARE PARTICIPANTS</th>
<th>STUDENTS FREQUENTLY ARE AN AUDIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research-tutored</td>
<td>Research-led</td>
</tr>
<tr>
<td>Engaging in research discussions</td>
<td>Learning about current research in the discipline</td>
</tr>
<tr>
<td>Research-based</td>
<td>Research-oriented</td>
</tr>
<tr>
<td>Undertaking research and inquiry</td>
<td>Developing research and inquiry skills and techniques</td>
</tr>
</tbody>
</table>

EMPHASIS ON RESEARCH CONTENT

<table>
<thead>
<tr>
<th>Types of Scholarship</th>
<th>Illustrative example of ways of engaging learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scholarship of discovery</td>
<td>Engage in inquiry-based learning; undergraduate research and consultancy projects with staff</td>
</tr>
<tr>
<td>Scholarship of integration</td>
<td>Engage in integrating material from different sources, including across disciplines; integrate life and work experience with academic studies; reflect on implications of studies for personal development</td>
</tr>
<tr>
<td>Scholarship of application / engagement</td>
<td>Engage with local, national, and international community service projects; volunteering; knowledge exchange projects; apply knowledge and skills in work-based placements</td>
</tr>
<tr>
<td>Scholarship of teaching and learning</td>
<td>Engage in mentoring; peer support and assessment; collaborative group work; learners as explicit partners in educational development and inquiry</td>
</tr>
</tbody>
</table>

Source: Healey and Jenkins (2009, 7; amended from Healey, 2005, 70)

Source: Healey et al. (2014, p56)
B. Students as partners in learning and teaching in HE

1. Learning, Teaching and Assessment

1.1 Peer Assisted Learning (PAL) at Bournemouth University, UK

Peer Assisted Learning (PAL) at Bournemouth University (BU) is a peer mentoring scheme that fosters cross-year support between students on the same course. It has operated at BU since 2001. It draws on many of the principles and ideas associated with the North American Supplemental Instruction (SI) Model that was originally developed at the University of Missouri Kansas City (UMKC) in the 1970s.

“Similarities between SI and PAL:

- Both schemes are run by students for students, and student empowerment is an essential part of this process
- Both schemes operate regularly scheduled PAL or SI sessions that appear in students’ timetables
- Learning is interdependent. Active learning is encouraged and participatory, collaborative group learning is facilitated by a trained, but non-subject expert, student leader
- Study skills are integrated into both PAL and SI in the sense that the subject content of a course or programme, 'what-to-learn', is fully integrated into sharing advice on 'how-to-learn-it'
- Both operate in a way that ensures they are supplemental to lectures and other teaching sessions the students should already have attended.

Differences between SI and PAL:

- In the North American model, the main purpose of the SI model is to target high risk, historically difficult courses. At BU, PAL enhances learning across all faculties and programmes rather than focussing on "difficult" courses
- PAL at BU places an additional emphasis is placed upon increasing the level of social integration within the student's normal seminar group, and in improving the first year students’ experience of university life
- Peer Support and PAL in the UK appear to have many variants and have seen more organic growth, for example, the National Centre for PASS (Peer Assisted Study Sessions) based at the University of Manchester
- SI Leaders are expected to attend all lectures and take notes for their course but this is not normally a practical option for the UK.”

Coordination of PAL, including leader training, is run centrally within Student and Academic Services by the PAL Coordination Team. Successful applicants attend two days of compulsory training in June or September with optional follow up training sessions offered throughout the autumn term. Weekly follow up training is delivered in collaboration with other support staff, providing information on various academic skills, support services and ideas for related PAL sessions. Like PAL itself, leader training has evolved gradually since it began in 2001. Changes include training on new online community areas on the University's Virtual Learning Environment.

Further information: Parton and Noad (2013); https://www1.bournemouth.ac.uk/discover/library/guests-visitor-information/peer-assisted-learning-pal

1.2 Broad Vision – an UG module for art-science collaborative research and interdisciplinary learning at the University of Westminster, UK

Every year a group of undergraduate students are recruited from across the university’s arts and science courses to become student researchers on an interdisciplinary learning project. Each project takes as its starting point a set of images, a body of knowledge or a central theme, employed to initiate discussion across disciplinary divides and identify areas of common interest for collaborative research ideas. The material provides a central focus, which can be approached from a range of perspectives, allowing emergent opportunities for the observation of difference and similarity – in terms of diversity of language, interpretation and understanding. Broad Vision has the following features:

- It creates opportunities for students from different disciplines to work together and learn from each other,
Students become teachers, researchers and producers through a three-phase educational model. Phase one focuses on disciplinary exchange through peer-teaching, phase two involves small group interdisciplinary research, and phase three engaging audiences through public outputs.

There is no prescribed curriculum. The projects emerge from the expertise and personal interests of participants (students and staff), framed by a central focus or question.

Participants produce a range of public outputs, enhancing graduate attributes and opportunities for professional learning. These have included publications, exhibitions, workshops and conference presentations.

All phases of the project are highly student-centred and encourage a leveling out of established academic hierarchies between staff and students, and between students at different levels of study. Participating courses to date include photographic arts, biotechnology, illustration, psychology, contemporary media practice, human and medical sciences, clinical photography, biological sciences, multimedia computing, interactive product design, animation, cognitive science, molecular biology and genetics, photography and digital imaging, and physiology and pharmacology.

Broad Vision was funded through a University of Westminster Interdisciplinary Pedagogic Research Fund (2010-2013) and a Wellcome Trust People Award (2013-14). In the first year of funding the project team developed a three-phase multi/interdisciplinary educational model, a framework for students to learn from each other, work together, and to produce professional outputs. In 2012, this model was accredited as an optional module for students in their second year of study, with continuation opportunities for other students. An educational research project is embedded within the learning design, observing student engagement with the project and the module. The educational model continues to be tested and developed as the programme evolves and the community of interest expands to involve more students from across the university and beyond.

Further information: http://broad-vision.info/

2. Subject-based Research and Inquiry

2.1 Curricula are organised around the concept of student as producer at the University at Lincoln, UK

'Student as producer' is central to the learning and teaching philosophy at the University of Lincoln. In this approach the emphasis is on students producing knowledge in partnership, rather than just consuming it. The focus of student as producer is the student, working in collaboration with other students and academics in real research projects, or projects which replicate the process of research either in or outside of their discipline. Students work alongside staff in the design and delivery of their learning, and in the production of work of academic content and value. Staff and students can apply for development funds to the Undergraduate Research Opportunities Scheme (UROS) and Student Engagement in Educational Development fund (SEED) to support work that further enables the principles of Student as producer to be embedded at Lincoln. This approach has made research-engaged teaching an institutional priority. As new courses are developed and existing ones undergo re-validation, staff and students are asked to consider student as producer in terms of the following key principles:

- **Discovery** – students learning through their own enquiry;
- **Collaboration** – working together to develop knowledge and understanding;
- **Engagement** – being part of a community of staff and students;
- **Production** – students as producers of knowledge rather than consumers.

These principles are enabled through assessment, citizenship, employability, pedagogy and curriculum, resources, skills, space and technology.

The University of Lincoln also promotes students as active partners in in quality enhancement through working collaboratively with staff, recognising that students are experts in their student experience.

Further information: http://edeu.lincoln.ac.uk/student-as-producer; studentasproducer.lincoln.ac.uk/; Crawford *et al.* (2015); Neary with Winn (2009); Neary (2010); Neary et al (2014); Ryan and Tilbury (2013, p. 17)
2.2 Mainstreaming undergraduate research and inquiry in largest recruiting courses at Miami University, Ohio, US

Miami University is moving from a ‘teaching and learning paradigm’ to a ‘discovery paradigm’ supporting the development of students as scholars. The ‘Top 25’ project, begun in 2007, has introduced innovative approaches that move learning away from “too much time telling students what we think they need to know, and not enough time using their curiosity to drive their learning” (Hodge 2006, p. 3). Over a four-year period the Top 25 project involved the largest recruiting courses being rewritten as inquiry-based courses. By the end 29 courses were involved. Each course was allocated $35,000 to fund curriculum revision. Learning technologists and educationalists supported the teams of faculty involved. Together the courses account for almost a quarter of total credit hours.

“Different courses have adopted different redesign strategies. For example, the Theatre Department refocused their traditional Theatre Appreciation class to center on the creation of theatre. Other classes, e.g., Marketing, used an ‘inverted’ or ‘flipped’ classroom model. In Communication and Calculus classes, the teams created a menu of inquiry exercises from which individual faculty can select. The Psychology team, similar to the Theatre team, refocused their course from the ‘what’ of the discipline to the ‘how’; they also introduced discussion sections led by trained undergraduate leaders” (Shore and Obade 2013, p. 4). Some of the physical spaces are being redesigned to provide flexible furniture to encourage discussion.

“Responses to survey questions show that the Top 25 courses are promoting active, engaged learning. Compared to students in the traditional sections, students in the redesigned sections report:

- more frequently discussing ideas from class with others outside of the classroom;
- spending much more time working with other students on projects during class time;
- spending less time memorizing facts and ideas;
- spending more hours on their course work and working harder than they thought they would to meet faculty expectations.

Top 25 courses also have more emphasis on higher-level thinking skills. Compared to students in the traditional sections, students in the redesigned sections report more frequently:

- supporting their ideas and beliefs with data or evidence;
- making judgments about the value of information, arguments, or methods by examining how others gathered and interpreted data and assessing the soundness of their conclusions;
- synthesizing and organizing ideas, information, or experiences into new, more complex interpretations and relationships;
- working on a project or paper that requires integrating ideas from various sources” (Hodge et al. 2011, p. 32).

Many faculty not involved in the Top 25 project are also adopting similar changes. “Because the redesigned courses are creating new expectations among students they are now arriving in class expecting to be challenged and ready to take more responsibility for their own learning” (Hodge et al. 2011, p. 33). The challenges in maintaining this ‘project’ include reduced financial support because of problems in the national and thus institutional economy, in maintaining the momentum. “The visibility of the Top 25 project and its support at the highest levels of the university have encouraged the development and expansion of programs that support student engagement. For example, the First Year Research Experience (FYRE) program has been established to offer incoming students an opportunity to engage in research and to establish early contact with a faculty mentor” (Hodge et al. 2011, p. 33).

Further information: Hodge (2006); Hodge et al. (2007; 2008; 2011); Taylor et al. (2012); Shore and Obade (2013); www.units.miamioh.edu/ceyl/engaged_learning/top25/; www.units.muohio.edu/oars/undergrad_research/first_year_research_experience/fyre_info.php
2.3 First year students engage in research at University of Saskatchewan, Canada

In classes of 50 to 350 people, first-year students come up with a researchable question, conduct a discipline-relevant investigation, and share their findings. These research experiences are in fields as diverse as business statistics, environmental studies, astronomy, animal bioscience, kinesiology, geography, history, and academic skills classes. Projects can consist of an assignment spanning a minimum of three weeks or be fully integrated across a curriculum. With the guidance of experienced students who work as research coaches, first years learn from content experts or examine existing, emerging, or historical data and artifacts to explore topics of interest to them.

A sample research question an individual might be, “Can the Zika virus-carrying mosquito survive in the current Toronto, Canada climate?” Students in social sciences classes work in groups of four to twelve to develop research questions of interest to them which are answered by class members through online surveys. For example, a research question can be, “Are class members who reside in rural areas more physically active than those who reside in urban centres?” In other classes, students examine issues in the media such as popular film, world events, or controversial topics, such as, “How many years would it take to recuperate energy savings equivalent to the start-up costs of installing solar panels in an average, local residence?” The data from questionnaires or other primary sources lead to students’ conducting literature reviews and synthesising and evaluating results. To communicate findings students create research posters, develop web pages, deliver in-class presentations, or otherwise engage in exchanging ideas and reflecting on what they have learnt throughout their class-based research experience.

Depending on the instructor and learning outcomes, assessment of learning can include formative feedback and/or marks for participation in activities which lead the groups to complete milestones and projects, on students’ developing critical thinking and reflective skills key to becoming scholars, and through exam questions that link course content with the research conducted. Faculty access paid research coaches, curriculum and instructional design specialists, and a program evaluation protocol through which a culture of integrating research and teaching and a community of scholars is fostered.

Further information: http://research.usask.ca/undergraduate/opportunities/for-undergraduates/curriculum-based-opportunities.php; Sangster et al., 2016

3. Scholarship of Teaching and Learning

3.1 Students are engaged as partners in shaping and leading their own educational experiences through the ‘students as change agents’ initiative at the University of Exeter, UK

The key concept is that students themselves take responsibility for bringing about change, based on their own research on aspects of learning and teaching. The approach enables students to be actively engaged with the processes of change, often taking on a leadership role. They are engaged deeply with the institution and their subject areas, and the focus and direction is, to a greater extent, decided by students. A small amount of funding was originally available from the University’s learning and teaching budget to support this initiative, but it is now largely embedded and funded within Colleges with support from a centrally-based Student Engagement Manager. There are no payments directly to students. The most important aspect is the focus on research, and building change on evidence-based foundations. Students from across the university have contributed to this initiative, carrying out a series of research projects on their learning and teaching environment, selecting concerns raised through student-staff liaison committees, and providing recommendations and solutions to improve their experience. Students work as apprentice researchers; their research methods include focus groups, informal interviews and questionnaire surveys. Outcomes have been presented at annual student-staff conferences, resulting in institutional engagement with key research findings. Around 500 projects have been undertaken since 2008 though, overall, thousands of students have been involved. Student research has driven organisational change, contributed to student engagement in shifts of policy and practice within the University, and supported students’ graduate skills in the areas of research.
project management, presenting outcomes, leadership and understanding of organisational development. For example, student projects in the Business School on the benefits students have gained from implementation of technologies in the classroom have contributed significantly to streamed video being now far more widespread, and 7,000 voting handsets being distributed to undergraduate and Masters students. A project on well-being developed by Psychology students has led to changes in student support and has informed the Personal Tutor system.

Further information: Kay et al. (2010); Dunne and Zandstra (2011); Sandover et al. (2012a); Kay et al. (2012); Dunne and Owen (2013a); Annual Reports of all projects 2013/4 and 2014/5 at https://issuu.com/studentsaschangeagents/docs

3.2 Students undertake educational development projects as academic partners with staff at Birmingham City University, UK

Launched in 2009, this partnership between Birmingham City University and Birmingham City Students’ Union aims to integrate students into the teaching and pedagogic research communities of the University to enhance the learning experience. Staff and students are invited to propose educational development projects in which students can work in an academic employment setting in a paid post at the University, on a more equal footing with their staff partner. Students negotiate their own roles with staff and are paid for up to 100 hours of work. Each project is designed to develop a specific aspect of learning and teaching practice. Typically, these may result in new learning resources, developments in curriculum design or the evaluation of innovations and changes that have already been made. It is key to the scheme that students are employed as partners not assistants, co-creators not passive recipients of the learning experience. Some projects are initiated and led by students. The Students as Academic Partners (SAP) scheme is part of a wider University initiative to create a greater sense of learning community at the University in which students and staff view it as the norm, not the exception, that they are engaged in academic discussion about the nature of their courses and the way they are taught. The University supports up to 100 projects each year and this internal quality enhancement mechanism is now seen as a staple of the university with bids being received at three points across the academic year. SAP also now offers a mentoring arm through our Student Academic Mentoring (StAMP) programme.

Further information: Birmingham City Students’ Union (2010); Brand et al. (2013); Curran and Millard 2016; Freeman et al. 2014; Nygaard et al. (2013); http://www.bcu.ac.uk/about-us/celt/student-engagement

3.3 Students act as Associates for Learning & Teaching (SALT) at University of Sheffield, UK

SALTs work in partnership with staff on projects which aim to develop and improve the learning and teaching experience for students. SALTs work on projects relevant to their Faculty, or the Institution, in a flexible way that can fit around their timetable. Each SALT team is given a project brief - they then work together, in partnership with staff, to shape and deliver their project. Each team will have a Lead SALT, whose role it is to oversee the team’s progress throughout the year. The students are paid for 50 hrs work during the academic year - an average of 2-3 hours a week during term-time. SALTs are different to Academic Reps and Union Councillors. SALTs are not expected to represent students nor sit on committees. They may carry out research or consultation with students as part of their projects.

In 2017-18 there are 8 teams working on faculty and institutional projects:

- Arts and Humanities – Student futures
- Engineering - Student Perspectives on the Development of the Sheffield Graduate Engineer Attributes
- Institutional – a) 301 Student Skills and Development Centre – British Conference on Undergraduate Research
 b) Library - Collaboratively prioritising and developing online information and digital literacy solutions for student success, employment and citizenship.
- Medicine, Dentistry and Health - Spaces for learning and teaching
- Science - Feedback for student learning
- Social Sciences – a) Induction and transitions, inclusive learning, personal and academic support
 b) Group assessment practices
In the original version of SALT, the students were called Ambassadors.

Further information: https://www.sheffield.ac.uk/staff/learning-teaching/our-approach/student-engagement/salt

4. Curriculum Design and Pedagogic Consultancy

4.1 Students act as pedagogical consultants at Bryn Mawr and Haverford Colleges, Pennsylvania, US

Most models of new faculty orientation and academic development assume that faculty learning is the purview of faculty colleagues or teaching and learning centre staff. Students as Learners and Teachers (SaLT), the signature program of the Teaching and Learning Institute (TLI) at Bryn Mawr and Haverford Colleges, challenges that assumption by inviting undergraduate students to work as pedagogical consultants to new and continuing faculty members. Between 2006 and 2016, 185 faculty members and 130 student consultants have participated in 265 pedagogical partnerships.

For partnerships focused on classroom practice, students are not enrolled in the courses for which they serve as consultants and often have no experience in the subject matter of the courses. Each student consultant establishes with the faculty member a focus for their collaboration; visits one class session each week and takes detailed observation notes on the pedagogical challenge(s) the faculty member has identified; surveys or interviews students in the class (if the faculty member wishes), either for mid-course feedback or at another point in the semester; meets weekly with the faculty member to discuss observation notes and other feedback and implications; and participates in weekly meetings with one another and with the director of SaLT. For partnerships focused on course redesign, faculty work with individual or groups of students who have taken the course to revise course content, assignments, and methods of assessment. For full-semester partnerships, student consultants work approximately six hours per week and receive a stipend of $700.

Feedback from participants suggests that these collaborations build confidence in both partners, deepen partners’ learning experiences and meta-cognitive awareness, recast the responsibility for education as one that is shared by faculty and students, and contribute to more inclusive and responsive curricula and practices. Further information: Cook-Sather (2011; 2014; 2016); Cook-Sather & Agu (2013); Cook-Sather et al. (2014); www.brynmawr.edu/tli/

4.2 Students act as co-creators of course design at Elon University, North Carolina, US

Since 2005, faculty, students, and academic development staff at Elon University have experimented with a variety of approaches to partnering in ‘course design teams’ (CDT) that co-create, or re-create, a course syllabus. Each team’s process varies, but typically a CDT includes one or two faculty, between two and six undergraduate students, and one academic developer. Faculty members initiate the redesign process, inviting the students and developer to co-construct a team. Students usually apply to participate in a CDT, motivated by a desire to contribute to a course they have taken or that is important to the curriculum in their disciplinary home. Once the CDT is assembled, the CDT uses a ‘backward design’ approach, first developing course goals and then building pedagogical strategies and learning assessments on the foundation of those goals. Time is the most important element in the success of a CDT. Successful teams usually meet weekly for two or three months, providing ample opportunities to both accomplish the CDT’s practical purpose of redesigning the course and, perhaps more importantly, to develop a true partnership that welcomes student voices. Students often doubt that they will be taken seriously in the process, and they also need time to develop the language and the confidence to express pedagogical ideas clearly. Many CDTs experience a liminal moment when everyone present recognizes that a fundamental boundary has been crossed, either by a faculty member ceding significant authority for the course design or by students claiming power in the process.

Further information: Bovill, Cook-Sather and Felten (2011); Delpish et al. (2010); Mihans, Long and Felten (2008)
5. Integrated approaches

5.1 Students are involved in research-based education and as change agents at University College London (UCL), UK

“At University College London, our top strategic priority for the next 20 years is to close the divide between teaching and research. We want to integrate research into every stage of an undergraduate degree, moving from research-led to research-based teaching”

Michael Arthur, president and provost, 30 April 2014: 22

UCL are developing a ‘Connected Curriculum’ initiative, as the means by which in five years all undergraduate programmes of study will have a profile of ‘research-based’ characteristics. Research-based education is the focus of UCL’s initiative. The connected curriculum has six dimensions based around the core principle of learning through research and inquiry (Fig. 10).

Fig. 10 UCL’s Connected Curriculum Framework

[Diagram of UCL’s Connected Curriculum Framework]

Source: Fung (2015)

The initiative, which is co-ordinated by the Centre for Advancing Learning and Teaching (CALT), requires changing the criteria for promotion, so that excellence in education is as significant to advancement as excellence in research and innovation. The implementation also involves reviewing all programmes and
designing clear strategies for working more closely with students, who can act as partners and change agents. A guide is being developed which presents four benchmark descriptors (a-d) for each of the six Connected Curriculum dimensions: a) Beginning, b) Developing, c) Developed, and d) Outstanding. This will help departments map their progress in implementing the connected curriculum in taught programmes.

UCL students and staff also have the opportunity to engage as ‘ChangeMakers’. The initiative supports students and staff working in partnership on educational enhancement projects. Since the pilot year, when 10 groups of students proposed and led projects of importance to them, the scheme has grown rapidly. In 2015-16 more than 50 student-led and staff-led projects were funded by CALT. Criteria for funding include “a clear strategy for working in partnership with students to address one or more of the Connected Curriculum dimensions” (Fung, 2016). All projects emphasise engagement of students as change agents to enhance the quality of education they receive. There are two strands to the initiative:

- projects, which can be initiated by anyone within the UCL community
- scholars, who are students working with their department to enhance an aspect of the educational experience decided upon by UCL (currently assessment and feedback).

5.2 Engaging students as full partners at the McMaster Institute for Innovation and Excellence in Teaching and Learning (MIIE TL), Canada

MIIE TL (now renamed the Paul R. MacPherson Institute for Leadership, Innovation and Excellence in Teaching) is highly unusual among centres of learning and teaching, in that it puts students explicitly at the heart of its vision, and in the number of students engaged in its activities. MIIE TL identifies five main foci:

1. Pedagogy / Educational Development
2. Technology Enhanced Learning
3. Research in Teaching and Learning
4. Program Enhancement
5. Student Engagement

Student engagement is different from the other four main pillars which define MIIE TL, in that it permeates the other areas with students being involved as full partners on projects across the board. Student centrality is the first of three guiding principles which characterize MIIE TL’s work:

“Students are more than the beneficiaries of MIIE TL’s work in advancing teaching and learning and McMaster. They are core partners who are involved not at the margins of MIIE TL’s efforts, but at the heart, at a level and with expectations that surpass those of normal student engagement programs” (MIIE TL, 2015 p.8)

Approximately 70 undergraduate and graduate students were engaged as student partners in the mission and work of MIIE TL in 2015-16 in ways both central to the processes of the Institute and meaningful to the students. The plan is to explore increasing this to up to 100 students per year. They are employed on average for 5-10 hours a week for one, two, or three semesters, though some continue with projects for longer durations.

Four goals are identified in the Strategy for this aspect of MIIE TL’s work:

1. Build capacity for the meaningful engagement of student partners in MIIE TL’s work in educational development, technology, research and advocacy.
2. Identify teaching and learning projects led by student partners who are first authors, presenters, designers and educational leaders.
3. Engage student partners as active collaborators in core aspects of MIIE TL operations.
4. Support student advocacy for teaching and learning issues on campus, regionally, nationally and internationally.
Early evaluation of the experience of the pilot of this initiative, involving 13 students from one interdisciplinary programme working in MIETL as student partners, concluded that “the process of developing student-staff partnerships can be troublesome and uncertain, but ultimately transformative in some cases at least” (Marquis et al. 2016, 11). A major outcome is that a significant number of co-authored staff and student articles (5+) and conference presentations (28+) were accepted in the first 30 months since the program began. Many more are expected as the outcomes of the expanded program are written-up.

5.3 Students act as partners with staff and industry in a Creative Industries Network (CIN) at Queensland University of Technology (QUT), Australia

CIN is a student-led initiative that promotes partnerships between Bachelor of Creative Industries (BCI) students, staff and industry. CIN began as the BCI Champions peer mentoring program that was co-designed between students and staff with the aim of building community within the first year BCI cohort. Six months in, the BCI Champions took the initiative and pitched an idea to the Program Convener and Dean of the Faculty to take on a broader remit and establish a professional organisation - CIN. They wanted to be able to engage with the practices of collaboration, career management, networked learning, transdisciplinarity, and enterprise (‘21st century skills’), all of which are emphasised in the BCI curriculum. This model is highly congruent with QUT’s strategic learning and teaching objectives, which are driven by industry engagement, authentic learning experiences, and real world learning (Bridgstock, 2016; Queensland University of Technology, 2016).

Initiatives run by CIN include Co-design BCI Curriculum; Orientation Program; Coterie and Creative Enterprise Australia (CEA); People Industry and Peers (PIP) networking events; Capacity building staff / students around students as partners; Social media campaigns; and Work Integrated Learning Workshop and the Industry Q and A events. Funding for the initiatives and support for CIN is sought and obtained by students and/or staff. The funding base consists of a range of grants, subsidies and sponsorship from both the university and industry.

The CIN organisational structure, governance and workflow mirrors that of a flexible creative start up. The core team consists of 28 members who operate within a flat organisational structure, with decision making shared by both staff and students in the team. Each of the students have an area of specialty that they work on as part of the team. Historically the initiative has been sustained through staff led student recruitment each year based on leadership potential. CIN is moving towards a student-led approach to recruitment in which students are either recruited for a specific skill set through a call out for expressions of interest by the student team (e.g. a graphic designer or arts project manager), or through their involvement at Town Hall meetings and volunteering on events. This core team sits within a broader network of 450 CIN members, and over 2000 BCI students

CIN run their meetings, creative catch ups and connect with other industry representatives from their base at the Coterie. Each month CIN run a Town Hall with Creative Industries students to talk about ideas, provide suggestions for improvement in the curriculum, and develop and foster new and existing relationships. Everyone works together (including staff) to contribute ideas, feedback and work on the planning and delivery of events, initiatives and processes. In addition to these larger meetings, the core team meet weekly to develop ideas, touch base with progress and continually re-examine their strategic planning for the year. These meetings are facilitated with an academic staff member – with some ideas being initiated by students, some by staff and some co-initiated out of the conversations and design thinking approaches that happen in these meetings.

The student’s role in CIN is voluntary, and is approached as a career building strategy. The majority of employers in the Creative Industries expect that students graduate with professional experience in their field. The roles in CIN are designed to reflect real world job positions so that a student is able to graduate with a role such as social media and communications manager for the Creative Industries Network on their CV. Their experience working in CIN sets them up for their transition into the workforce, and allows them to build contacts and connections with industry that they can then utilise later in life. The modular set up of the core team means that students are able to step in and out of key roles depending on their availabilities around work, university and life.
Case studies 2: Engaging students in partnership through research and SoTL

1. Subject-based research and inquiry

1.1 Undergraduate research at the University of Gloucestershire, UK begins at induction

In 2007, over 650 students in the Faculty of Education, Humanities and Science undertook discipline-based inquiry projects during induction week. This involved them working in small groups to collect information from the library and in the field, analyse it, present it to tutors in novel ways and receive formative feedback. For example, the human geographers and the sociologists researched the experience of Gloucester residents of ‘the Great Flood of 2007’. The biologists and the psychologists investigated primate behaviour at Bristol Zoo. Other faculties in the University are developing their own versions of undergraduate research as part of induction. It has also proved a significant staff development activity both for the many academic tutors involved in designing inquiry-led activities and for the library staff who changed their approach to library induction to support the specific student research projects.

1.2 Inquiry-based learning introductory course had a significant impact on students’ subsequent performance at McMaster University, Canada

McMaster University has been running a first-year course for Social Sciences based on inquiry since the late 1990s. It is typically taught in groups of no more than 25 students assigned to an instructor, who are subdivided into groups of four or five students. All of the groups have the same curriculum, reading material, process of assessment and goals that are outlined in a detailed compendium. The classes meet for 12 three-hour concurrent sessions. Class time consists of a combination of exercises and tasks for building the students’ critical abilities and time for students to share ideas about their individual inquiries with other students. Students investigate aspects of a broad social science theme, such as ‘self-identity’, and address a common inquiry question, such as: ‘Why do images of ethnicity, race, gender, sexuality, age, class, or abilities help to create aspects of personal and community identity?’ Students have to propose their own inquiry question, such as: ‘Why do some children apparently become violent after watching violent cartoons while others seem to be unaffected?’ They have to justify why the question was important in relation to existing literature. They then investigate the question through a process that involves developing and testing hypotheses using secondary sources. There is strong research evidence of the positive impact of this inquiry course on the subsequent performances of students at McMaster University.

Further information: Justice et al. (2002, 2007a, 2007b, 2009); socserv2.mcmaster.ca/Inquiry/CourseOutline.htm; For more recent versions of the course see: http://www.youtube.com/watch?v=i9IdE_uC1pc; http://cte.uwaterloo.ca/research_on_teaching_and_learning/TBRG/OND/2011/Presentations/Vine.pdf

1.3 Changing how first year students view experimental physics as a learning experience: The ‘Secret Objective’ at University College London, UK

One of the problems that 1st Year, undergraduate experimental physics courses have is the way that students approach the discipline. Often their previous experiences have been limited to directed demonstrations rather than experimentation. It is not unusual for students to view physics experiments to be a recipe that they follow to get a ‘correct’ answer. Indeed, some students have said that, in the past, they were quite happy to make up
results so that they matched their expectations regarding the successful experimental outcome. This is not what we want physicists to do.

Consequently, a new teaching concept was introduced at University College London’s 1st Year practical physics courses: The ‘Secret Objective’. Students are encouraged to believe that not all of the scripted experiments were as straightforward as they seem. Doubt is placed in the minds of the students about the validity of their preconceptions regarding the outcomes of experiments. They are told that some experiments have been modified so that they will not behave as expected. This can range from the theory in the script not being sufficient to explain the data, to anomalies in the experimental system that cause interesting problems. Indeed, some experiments can have multiple Secret Objectives. Therefore, the students are trained to look for anomalies in the practicals that might have been placed there by the experiment creator. Breakout sessions are used to discuss what they think the ‘Secret Objective’ was so that a discussion can take place regarding how career physicists approach experimental challenges and unexpected findings.

Consequently, they actually analyse their experiments rather than purely copying values in their laboratory notebooks without any critical thought. They actively observe in a way that is quite new to them. Indeed, they often find Secret Objectives that are not placed there by the experiment creator but are there as a result of the real physics. That is what we need them to do and ‘Secret Objectives’ are a means to do this. It is habit forming.

Further information: Paul Bartlett (paul.bartlett@ucl.ac.uk)

1.4 Improving interactions between first-year science students and researchers through an informal networking program at The University of Queensland, Australia

The Undergraduate Science Students Experience in Research (USSER) Network is an extracurricular program welcoming first year undergraduate science students to the research culture of The University of Queensland (UQ) from their first semester. The primary aims are to increase the frequency and quality of interactions between undergraduate science students and UQ researchers, to help students understand what a career in research entails, and the specific research being conducted by scientists at UQ. Of the three components to the USSER Network (lunches, tours and placements), the main component is the “Meet the Researcher” lunches, during which researchers meet with groups of undergraduate students over informal lunches each semester. These lunches take a round robin a ‘speed dating’ format, where 3-5 students and a researcher have a 10-15 minute conversations about research and career paths. Once time is up, the researcher moves to the next table to meet with a second, and finally, a third group of students. At the end of these three rounds, each researcher provides a short biography for the entire group, and students are able to mingle with the researchers they have common interests with for the remainder of the lunch. The design has been shown to foster conversations amongst small groups, and thus provide numerous, personalised interactions between the researchers and over 100 new science students at each event. In addition, students are invited to undertake guided tours of research facilities on the campus, and are supported in gaining work experience with research groups through a placement program.

Sources: Farrand and Myatt (2009); www.science.uq.edu.au/uss

1.5 Scientific Communications 101: A student organised science conference at Curtin University, Australia

Students in an introductory year one course with a linked focus on physics and science communication were required to plan and present a one-day Physics conference. The context was an institutional requirement that employment focused communication skills be integrated into disciplinary programmes. The idea of a student-organised science conference, publication of the proceedings, and the reasons for the approach were explained to students in the first Physics class. For the following week, students were asked to decide on a Physics topic they were interested in presenting at the conference, the overall theme for the conference, and how all the students would contribute to the organisation of the conference and the publication. Later in the term the conference took place over a day and staff and students from the department and local high school students and their teachers attended. In the years that the course ran it succeeded in helping students develop more effective communication skills linked to their discipline, introduced them to research debates and helped them begin to think and communicate like physicists.
1.6 Over 1,500 biology students are involved in research at University of Sydney, Australia

First year Biology students at the University of Sydney contribute to the understanding of the prevalence of asthma in Sydney. Each student learns to pour an agar plate which they take home and expose in their back yard over a 10 minute period, to collect a sample of airborne fungal spores in the atmosphere. There are 1,500 students in the class and they live all over the Sydney metropolitan area. Once the fungi collected have grown into colonies, students learn to use a key to identify the fungi, and the class results are converted into maps showing the distribution of the different species. This generates new knowledge, which they discuss online with an international expert, and which is fed into research programs on allergens. The students involved reported a better awareness of research, and their involvement in it, than students involved in a practical course which had a traditional textbook demonstration practical exercise. Dr Charlotte Taylor describes a thousand students as an 'ideal' size of research team for carrying out research of this nature.

Further information: Zadnick and Radloff (1995); http://www.mq.edu.au/ltc/altc/ug_research/research_curriculum.htm

1.7 Introducing students to academic staff research: Department of Geography, University College London (UCL)

All year one students in Geography at UCL do an assignment in term one, in which students interview a member of academic staff about their research.

- Each first year tutorial group is allocated a member of academic staff who is not their tutor.
- Tutorial groups are given three representative pieces of writing by the member of staff along with a copy of their CV, and a date is arranged for the interview.
- Before the interview, students read these materials and develop an interview schedule.
- On the basis of their reading and the interview, each student individually writes a 1,500 word report on: a) the objectives of the interviewee's research; b) how that research relates to their earlier studies; and c) how the interviewee's research relates to his or her teaching, other interests and geography as a whole.

A variant on this entitled ‘Meet your Lecturer’ has been integrated into first year tutorials by other departments at UCL. For example, in Structural and Molecular Biology department students are given a tour of a research laboratory; in linguistics groups of first year students ‘meet a researcher’ in their first week; in another department the output of the meeting is that students make a short video about the Professor’s research.

Source: Dwyer (2001); https://www.ucl.ac.uk/teaching-learning/case-studies-news/connected-curriculum/meet-lecturer-personal-tutoring-difference; https://www.ucl.ac.uk/teaching-learning/case-studies-news/research-basedlearning/meet-researcher-linguistics

1.8 First year students pose questions through observation in biology at ANU, Canberra, Australia

In groups of 12–20 students, students conduct this exercise while walking through the nearby Australian National Botanic Gardens with a demonstrator (TA) as part of the 350 student introductory class on Evolution, Ecology and Genetics. The exercise takes 2 to 3 hours, plus some time to write up afterwards. It gives first year students the liberty to start thinking like scientists, to stimulate their curiosity and to get them talking to their peers.

Students are taken for a short walk through the gardens and encouraged to observe their surroundings. They then are sent off ‘solo’ for ~30 minutes to write down 10 questions (e.g. Why do eucalyptus leaves dangle?). Each student then reads one or more of their questions to the group and together the students and tutor restate the question as a hypothesis (e.g. eucalypt trees in arid environments have leaves that dangle at steeper angles than those in wet environments) and design an experiment to test that hypothesis. The exercise builds confidence and comfort with the experimental process, demonstrates what makes a ‘good hypothesis’, and begins to get students thinking about elements of experimental design.

Further information: Adrienne Nicotra (adrienne.nicotra@anu.edu.au);
1.9 Biology start up business final year project, University of Durham, UK
Biology Enterprise is a collaborative venture between Durham Business School and the School of Biological and Biomedical Sciences. This elective module for final year undergraduate students in the School of Biological and Biomedical Sciences aims to introduce science students to the key processes of business start-up and enhance their enterprising skills and behaviours. The module is project-orientated with self-selecting groups of students who generate an idea for a business opportunity that is based on a scientific discovery. Students use their knowledge and understanding of science to develop and research their idea into a technology that can be readily commercialised e.g. a diabetes breath tester, a biodegradable chewing gum. In parallel, the Business School teaches students the necessary skills and knowledge required to develop their idea into a successful business. This course offers science undergraduates an alternative to the traditional laboratory-based project and is useful for those seeking employment in business and commerce.
Sources: http://www.bioscience.heacademy.ac.uk/events/dur05.aspx;
http://www.dur.ac.uk/biosciences/undergraduate/courses/content/level3/lab_project_enterprise_schools/;
http://www.bioscience.heacademy.ac.uk/journal/vol11/beej-11-r2.aspx;
http://www.bioscience.heacademy.ac.uk/ftp/events/york05/cowie.pdf

1.10 Science undergraduates build on research of previous students at University College London, UK
The Department of Science and Technology Studies at UCL has supported a range of innovative upper level courses where students research and publish their research. The pilot course, the History and Philosophy of Chemistry (2000-5), was developed by Hasok Chang (now at Cambridge University). The chief innovation was the mechanism of inheritance: each year students develop work produced by the previous students; a process repeated until publishable materials are produced. One outcome was a monograph on the history of chlorine, which contained selected articles by undergraduates on their research (Chang and Jackson 2007).
Margaret Jackson who co-taught this course in 2004-5 has both maintained the course philosophy and integrated the use of Open Resource digital materials. Each student is required to write a contribution to a controversy within the history of science which they submit to the Virtual Nicholson's Journal. This is based on Journal of Natural Philosophy, Chemistry and the Arts which was published by William Nicholson from 1797-1814. Each year Jackson in the guise of William Nicholson - selects a topic e.g. the late 19th century controversy surrounding the Law of Storms, and publishes an issue of the journal containing a selection of relevant primary historical sources for students to carry out their research. Students write in response to the primary sources and any already published student contributions to the current topic, and they must do so in the role of a contemporary character, real or imagined, of their choice.
Since 2007-8, Chiara Ambrosio has developed a related course ‘Topics in the History of the Physical Sciences’. Selected students investigate an aspect of the history of electricity from a variety of angles: philosophical, sociological. Students produce an extended essay and their research materials in a form that subsequent students can use them. Open Resource digital technology is central to the course including an online journal for student articles: with digital support making “the editing Scalework considerably more ‘manageable’, thus allowing our methodology to become ‘more transferable’” (Ambrosio and Jackson 2011).
Sources: Chang (2005; 2007); Chang and Jackson (2007); Ambrosio and Jackson (2011)
http://www.ucl.ac.uk/sts/study/hpsc/3007;

1.11 Engaging fourth year honours students in researching and publishing books on the anthropology of infectious diseases, McMaster University, Canada
This capstone seminar gives students an opportunity to do original research using primary sources and to publish an edited e-volume and soft cover book with an ISBN number. I assign the subject matter; thereafter, the course is student-driven and inquiry-based. Students ask questions, decide what they need to know, and
determine issues to be explored. They determine the structure of the book, select a topic for their chapter, and
learn the skills of book production. Information-collection (qualitative and quantitative) is collaborative; all
documents are shared on a website. Task forces assemble and annotate information for the group. Our
research site is the City of Hamilton so students can apply the anthropological ethics of community-based
research and knowledge transfer to give something back to the community that has supported their education
for the past four years. The course emphasizes extra-mural learning; classes are research meetings in which
students brainstorm, collaborate, edit each other's work, and engage in peer teaching. The students are
problem-solvers, while I act as facilitator and mentor. The course is writing-intensive. Students must meet tight
deadlines for submitting an abstract, outline, first draft, and final draft of their chapter. I give feedback on each
submission. The course is capped at 25 students, but enrolment is normally 15-20 students. Students submit a
written self-evaluation of what they have contributed to the research collaboration and to the book production
process and assign a grade for their work. I either agree with the grade or raise or lower it marginally, based on
my evaluation of their work throughout the term. Because all the work is shared on a website, it is a simple
matter to verify claims. The intensive nature of the course means that I get to know the students and their
work very well. Seven books have been published between 2006 and 2014 and are available on McMaster’s
institutional repository.

Further information: Ann Herring (herring@univmail.cis.mcmaster.ca);
https://macsphere.mcmaster.ca/

1.12 Giving students alternative assessment options for undertaking a product design project at Nottingham
Trent University, UK

The course offers several possible routes. Assessment is based on a learning contract negotiated and agreed
between the tutors and student. This contract stipulates the content of work, enabling students to complete
one of the following options:

1. a 10,000-word dissertation and students produce a poster that summarises their work;
2. a 5,000-word conference paper with a supporting presentation delivered to peers and tutors;
3. a conceptual project with a 5,000-word critical justification. As well as a written outcome students are
 required to produce illustrations or simulations.

Prior to students undertaking their chosen assignment, there is a three-week intensive period when students
complete a learning contract. The contract identifies what option the student will complete, what they hope to
learn and how that learning will be demonstrated. The module involves students using a wide range of primary
and secondary research skills.

See also: 2013 Developing and enhancing undergraduate final year projects and dissertations. York: HE
Academy. (Healey M, Lannin L, Stibbe A and Derounian J) 93pp
http://www.heacademy.ac.uk/projects/detail/ntfs/ntfsproject_Gloucestershire10

1.13 Students in Engineering, Computer and Mathematical Sciences present their project findings to industry,
public, schools and university at the Ingenuity Fair, Adelaide, Australia

Ingenuity is the annual flagship event for the Faculty of Engineering, Computing and Mathematical Sciences at
the University of Adelaide. It serves as a valuable platform for students to professionally present their work to a
wide range of specialist and non-specialist audiences, including university peers and staff, industry
representatives and recruiters, primary and high school students and teachers, family and friends, politicians
and members of the general public. In 2016, 280 student capstone projects from over 660 student exhibitors
were on display at the Adelaide Convention Centre. Over 4,500 people attended. The showcase took place on
one day at the end of the academic year with the previous evening reserved for industry visitors. The exhibition
was organised around nine cross-disciplinary themes — defence and security; energy; health; innovation and
research; resources; smart systems and technologies; society and environment; structure and infrastructure;
and sustainability.

Source: http://www.ecms.adelaide.edu.au/ingenuity/; correspondence with Bernadette Foley
(bernadette.foley@adelaide.edu.au)
2. Scholarship of teaching and learning (SoTL)

2.1 Building a network for undergraduates researching into teaching and learning: Connecting students across continents

The Matariki Undergraduate Research Network (MURN) connects undergraduate researchers investigating teaching and learning topics in four universities spread across four countries: University of Western Australia; University of Otago, NZ; Durham University, UK; and Queens University, Canada. The universities are part of the Matariki network and in each institution 6-12 undergraduates are offered internships to explore extra-curricular teaching and learning research projects focused on a common topic (internationalisation in 2012 and 2013). The students start at the same time in June and share an online classroom using web technology to engage in synchronous and asynchronous learning. They are trained locally and globally in educational research methods (with some synchronous sessions) and are supervised locally as they undertake their research. The preparatory workshops are delivered to all students either in a synchronised process via online delivery or by staff in the respective universities. A timeline of activities and events throughout the six month project is used to ensure that students in all universities are experiencing the same program at the same time and are able to meet online to discuss developments, progress, challenges and achievements. The students network on a regular basis to share their learning journeys and research findings.

Further information: Sandover et al. (2012b)

2.2 Engaging students in action research to enhance teaching and learning practice and policy at University of Newcastle, UK

Students who do not normally get involved in the university community were engaged by permitting development of their own ideas, via undertaking research to enhance aspects of learning and teaching issues, broadly conceived. We wanted to encourage action research, as the outcomes of the projects are aimed at enacting positive change to practice and policy. We recruited students from one degree initially. Two projects were supported: Project A explored the possibility of creating a language course that had a specific focus on medical vocabulary. Project B looked into creating a suite of tools to help students understand and create ‘Social CVs’ and utilise online self-promotion tools. The students gained internship funding which helped them keep focused and committed. They were supported by a staff supervisor throughout the project. The research phase was a valuable lesson for both students in the real-life benefits of research informed practice. Working on a more business-like project helped to reinforce the importance of rigorous research in all areas of work – whether study or business. In the implementation phase the students were operating outside their normal comfort zones; they were having to network and market their projects to attract ‘investors’ to help them realise the full potential of their plans; this particularly encouraged a lot of personal development. This was a useful pilot whilst noting that only a small proportion of students are likely to undertake such projects on this basis.

Further information: Grace Barker (grace.barker@newcastle.ac.uk) and Colin Bryson (colin.bryson@newcastle.ac.uk)

2.3 Students involved in international collaborative writing groups through ISSoTL

International collaborative writing groups (ICWG) aim to build the capacity of participants to work and write in international collaborative groups. Eight or nine groups work at a distance to prepare a 2000 word outline for online discussion running up to a International Society for the Scholarship of Teaching and Learning (ISSoTL) pre-Conference workshop, where groups meet for two and half days. They spend time preparing their draft paper within their groups and in discussion with participants of other groups along with some social activities as part of the workshop. Following the workshop the groups have five to six months to complete and send in their papers for submission to the Society’s international SoTL journal, Teaching and Learning Inquiry. The first ICWG was in 2012-13 linked to the ISSOTL 2012 Conference hosted by McMaster University, Canada. Seventy people from 13 countries took part, spread across nine groups with each comprising at least one student member. Nine scholarships were provided to subsidize the costs of student members. The 2012 initiative resulted in eight
publications in a special edition of *Teaching and Learning Inquiry* along with a SoTL publication evidencing the initiative’s positive impact on participants. The second ICWG was associated with the 2015 ISSOTL Conference in Melbourne Australia involving 61 people from 11 countries with 9 full-time students. Fees for students were waived and all were offered free accommodation and a travel subsidy (for those outside of Melbourne). Further information: Healey et al. (2013); Healey and Matthews (2017); Marquis et al. (2014, 2015); http://itali.uq.edu.au/matthews-studentsaspartners

2.4 Research Student Scholarships for Teaching and Learning, at The University of Queensland, Australia

The Institute of Teaching and Learning Innovation (ITaLi) has started hosting students for a Winter or Summer Research Scholarship – leveraging an institutional scheme that offers scholarships for students to be involved in research projects. The goal of the project is to explore the topic of students as partners by involving students themselves in teaching and learning projects. This approach was specifically designed to uncover points about student interaction that might not be immediately obvious to academic staff and other non-students. In 2015, five students were involved. Each of the students set out to explore a particular niche subject, such as employability of international students, which included drafting a survey to find out more about the students’ perceptions on employment in Australia. Similarly, the problem of low response rates to course evaluations was explored, with special interest in uncovering personal motivations behind why students participate in these surveys as a way to increase overall response rates. Personal motivation was also taken into account when looking at how to involve students in improving teaching and learning at UQ, especially when it came to representing the student voice and improving staff–student communication. Likewise, the student-supervisor relationship was considered in a study on how students look for potential supervisors and how this process can be improved. Finally, the issues surrounding dual degree students such as lack of general support, issues with skill transfer and lower perceptions on their graduate learning outcomes were explored in detail. In practice, the idea behind the project is simple. Involving students personally leads to new insights as well as personal motivation for the students involved. This can manifest itself in many ways; as part of this project, suggestions were placed before the Bachelor of Science Review board and a manuscript is being prepared detailing this particular work. Further information: Kelly Matthews (k.matthews1@uq.edu.au)

2.5 Active Student Participation in Education Network (ASPEN) at University of Glasgow, UK

Active Student Participation in Education Network (ASPEN) is a learning community led by Cathy Bovill. Created in 2015, ASPEN aims to bring together those who are interested in trying to establish more meaningful interactions between students and staff in learning, teaching and assessment. ASPEN meets every 6-8 weeks to share research and practice, as well as offering space for discussion and collegial support. According to Catherine, “ASPEN meetings are an opportunity for us to identify students and staff at the University of Glasgow who are working in partnership and to bring them together. I have tried to ensure that events offer the opportunity for showcasing excellent partnership work from around the University.” In the first year the network consisted of core of 25-30 people, predominantly staff plus some students, with a mailing list of 120 interested colleagues. As the network moves into its second year, a Steering Group of staff and students has been formed and is currently discussing the possibilities of creating more strategic impact on the university and how members of the network might undertake a range of collaborative research and practice. Further information: Cathy Bovill (Catherine.Bovill@GLASGOW.AC.UK); http://www.gla.ac.uk/services/learningteaching/resourcesforstaff/goodpracticeresources/aspen/