Dr Dabing Zhang

Dr Dabing Zhang
  • Biography/ Background

    1998 –1999 Assistant Professor, Agri-Tech Center, Shanghai Academy of Agricultural Sciences (SAAS)

    1999 – 2001 Associate Professor, SAAS

    2001 – 2005 Professor, SAAS

    2005 – 2008 Professor, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SLSB-SJTU)

    2008 –2015 Distinguished Professor

    2015 – Chair Professor, SLSB-SJTU

    2015 – Professor, Director of the Joint Laboratory on Plant Science and Breeding, the University of Adelaide (continuing position since 2018)

     

    I completed my PhD at the Institute of Plant Physiology and Ecology, Chinese Academy of Science (Shanghai, China) in 1998. Immediately upon completing my PhD, I moved into an Assistant Professorship position at Agri-Tech Center, Shanghai Academy of Agricultural Sciences, running my own laboratory of five researchers. In 2005 I started a professor position on plant biology in Shanghai Jiao Tong University (SJTU), and established the first research team on plant biology by recruiting four researchers, developing plant research and educational facilities such as plant growth chambers, field, transformation, cell biology, genomics and molecular biology in SJTU. I received the Doctor of Science Honoris causa at the University of Adelaide (UoA) in 2014 and as a joint professor to lead the Joint Laboratory on Plant Science and Breeding between between SJTU and UoA starting at 2015. I coordinate activities between the two nodes, one at the Waite Campus and the other at SJTU, Shanghai, China, which offer complementary expertise and facilities for crop researches. In 2022, I started the Lead Researcher in the Centre of Crop Environment Adaptation and Development Solutions (CEADS) at the Waite Campus. 

     

  • Awards & Achievements

     Awards:

      l  2019 Asian Scientist top 100 list

      l  2016, 2017, 2019, 2020 and 2021 ISI Highly Cited Researcher

      l  2016–2019 Highly cited scholar in China

      l  2018 TWAS (The World Academy of Sciences for the advancement of science in developing countries)                 Prize in Agricultural Sciences for 2018

      l  2015 Top cited scientist in Plant Cell and Plant Physiology (top plant biology journals)

      l  2015- Honorary Professorship at the University of Nottingham

      l  2014 Honorary Doctorate of Sciences from the University of Adelaide

      l  2013 KoGuan Teaching Award Winner in Shanghai Jiao Tong University

      l  2012  Mudan Prize for Life Science and Agriculture of Shanghai Municipality

      l  2004, 2012 First Class of Progress of Science and Technology Prize in Shanghai

      l  2009 Yangtse River Scholar of Ministry of Education, China

      l  2007 The Distinguished Young Scholar from National Natural Science Funds

      l  2006 The Excellent Prize of MingZhi RUYE Life Science by Shanghai Municipality

      l  2005 New Century Excellent Talent in Chinese Universities by Ministry of Education

      l  2005 Shanghai Shuguang Scholar by Educational Commission of Shanghai Municipality

      l  2001 A Shanghai Rising-Star by Science and Technology Commission of Shanghai Municipality

     

    Achievements:

    I have 24 years’ expertise in investigating cereal development, including male reproduction and inflorescence morphogenesis and their interaction with environmental factors (temperature and light) as well as plant root  adaption to soil hardness using genetic, cytological, biochemical and genome-wide methodologies. These research projects have produced over 300 publications of strong relevance to the wider plant science community in journals such as Nature, Science, Nat Plants, Nat Commun, Dev Cell, PNAS, The Plant Cell, Cell Res, Mol Plant etc, resulting in recognition as an ISI Highly Cited Author in 2016, 2017,2019, 2020 and 2021; an honorary DSc degree from the University of Adelaide (UoA) in 2014; The World Academy of Science (TWAS) Prize in Agricultural Science in 2018; and inclusion on the Asian Scientist top 100 list (2019). My scientific discoveries have been presented at over 45 national and international conferences, on 15 on which I was involved as an organiser. Since 2014, he has been CI on 14 national and international grants. Outside of academia, my contributions to rice breeding have resulted in 13 patents and the development of five rice varieties, currently grown commercially in Shanghai. Among the 13 patents, 8 male sterile genes and mutants have been licenced to two independent breeding companies in China.

     

    We have made contributions to cereal developmental biology and rice hybrid breeding, focusing on the identification of new factors that regulate male reproduction, inflorescence organogenesis under changeable environmental factors and root growth under compacted soil in rice and barley . Breakthrough discoveries include:

    l  The first transcription factor that regulates sugar partitioning from photosynthetic tissues to anthers to promote pollen maturation during a short photoperiod.

    l  A mechanism for controlling pollen fertility by buffering environmental changes through leucine-rich repeat receptor-like kinases.

    l  Genes that regulate the specification of male germ cell lines, tapetal programmed cell death, formation of lipidic chemicals required for rice anther development and pollen formation.

    l  A novel function for plant plastids in the reduction of fatty acids to alcohols during male development.

    l  A new jasmonic acid signalling pathway that controls rice spikelet morphogenesis, which enabled development of a new genetic model for control of rice spikelet meristem activities.

    l  The conserved and divergent picture of MADS-box proteins in determining inflorescence, spikelet, floral and male development in rice.

    l  The barley SEPALLATA MADS-box protein HvMADS1 is responsible for maintaining an unbranched spike architecture at high temperatures.

    l  The discovery on that the mechanical impedance is not the major driver of reduced root growth in compacted soils; rather, the hormone ethylene, released by the plant, limits root growth in compacted soils. Plants insensitive to ethylene can continue to grow in compacted soils which could overcome compaction constraints, and possibly reshape soil structure and boost yield.

  • Research Interests

     

    1. Mechanism of the development of inflorescence and spikelet in cereals and its interaction with temperature and light signals

    Rice, barley and wheat, the representative grass plants and cereal crops, develop specialised morphology of inflorescence and spikelet, which determines the ultimate yield production. We are using various approaches including forward and reverse genetics, biochemistry, cell biology etc to investigate the molecular mechanisms underlying cereal inflorescence and spikelet development. Current research focuses on transcriptional factors such as MADS box genes and the regulatory network involved in the morphogenesis and development of inflorescence and spikelet in rice, barley and wheat. Key research projects include: 1) identification of new genetic factors contributing inflorescence architecture and yield traits using GWAS and pan-genome sequencing in cereals; 2) investigation of the mechanism controlling cereal inflorescence and spikelet development and its interaction with temperature and light signals; 3) evolutionary and functional analysis of genes involved in inflorescence shape and flower organ formation (like ABCDE-model) in cereals; 4) research of key regulators that control grain yield from rice to barley/wheat using CRSPR/Cas9 genome editing approaches.

     

    2. Molecular control of cereal male reproduction

    The life cycle of flowering plants alternates between diploid sporophyte and haploid gametophyte generations. Male gametophytes develop in the anther compartment of the stamen within the flower and require cooperative functional interactions between gametophytic and sporophytic tissues. During the male reproductive development, there are numerous biological events including cell division, differentiation and degeneration of somatic tissues consisting of four concentric cell layers surrounding and supporting reproductive cells as they form mature pollen grains through meiosis and mitosis. To understand the mechanism of cereal male reproduction, we are combining systematic biology (genomics, transcriptomics, proteomics, metabonomics) with other approaches such as genetics, cell biology, biochemistry, and structure biology to elucidate the molecular mechanism underlying each biological process of male reproduction in rice and barley.

     

    3. Molecular mechanism of root adaption to soil compaction

    Soil compaction inhibits plant root penetration and water/nutrient uptake, reducing crop yields by 25%, and when combined with drought by up to 75%. Our recent work has shown that mechanical impedance is not the major driver of reduced root growth in compacted soils; rather, the hormone ethylene, released by the plant, limits root growth in compacted soils. Plants insensitive to ethylene can continue to grow in compacted soils, we are discovering ethylene associated components to overcome compaction constraints and reshape soil structure and boost yield in barley, wheat and rice, and deepen our understanding on the root-soil interaction.

     

     

  • Publications

    (i) BOOK CHAPTERS:

    (1)     Gu WH, Zhang DB, Qi YP, Yuan Z#. Generating Photoperiod-Sensitive Genic Male Sterile Rice Lines with CRISPR/Cas9, in Plant Genome Editing with CRISPR Systems: Methods and Protocols, Y. Qi, Editor. 2019, Springer New York: New York, NY. p. 97-107.

    (2)     Zhang, DB., Yang XJ and Shi JX. (2016). “Role of lipids in plant pollen development”. In Lipids in Plant and Algae Development, Subcellular Biochemistry 86, pages 315-337. Editor: Nakamura, Yuki, Li-Beisson, Yonghua. Springer Science+Business Media New York.

    (3)     Zhang, DB., and Li H. (2014). “Exine Export in Pollen”. In Plant ABC Transporters, Signaling and Communication in Plants, 22, pages 49-62. Editor: Markus Geisler. Springer Science+Business Media New York.

    (4)     Zhang, DB., Yuan, Z., An G., Dreni, L., Hu J.P., Kater M.M. (2013). “Panicle Development”. In: Genetics and Genomics of Rice, Plant Genetics and Genomics: Crops and Models 5, pages 279-295. Editors: Q. Zhang and R.A. Wing. Springer Science+Business Media New York.

    (5)     Zhang DB, Yang L., Lee C.H., Lee SH., Kuo B.J., Kitta K. and Tachikawa M. Genetically Modified and Non-Genetically Modified Food Supply Chains: Co-Existence and Traceability” ——Chapter 27, Labelling and Detection of GM Crops and Derived Products: Regulatory Frameworks and Research Issues in East Asia. 2012, pages 521–541.

     

    (ii) REFERED JOURNAL ARTICLES:

    Review papers

    (6) Deng FL, Zeng FR, Shen QF, Abbas A, Cheng JH, Jiang W, Chen G, Shah AN, Holford P, Tanveer M#, Zhang DB#, Chen ZH#. Molecular evolution and functional modification of plant miRNAs with CRISPR. Trends Plant Sci.2022; S1360-1385(22)00009-7. https://doi.org/10.1016/j.tplants.2022.01.009

    (7) Shen CQ, Li G, Dreni L, Zhang DB#. Molecular control of carpel development in the grass family. Front              Plant Sci. 2021, 12:635500. https://doi.org/10.3389/fpls.2021.635500

    (8) Yuan Z#, Persson S, Zhang DB. Molecular and genetic tools to change spikelet development and grain yield. aBIOTECH. 2020, 1: 276-292. https://doi.org/10.1007/s42994-020-00026-x

    (9)  Kim YJ, Zhang DB#, Jung KH, Molecular basis of pollen germination in cereals. Trends Plant Sci.2019, 24(12): 1126-1136. https://doi.org/10.1016/j.tplants.2019.08.005

    (10) Yu, J., & Zhang, DB#. Molecular control of redox homoeostasis in specifying the cell identity of tapetal and microsporocyte cells in rice. Rice, 2019, 12(1): 1-9. https://doi.org/10.1186/s12284-019-0300-3

    (11) Kim YJ and Zhang DB#. Molecular control of male fertility for crop hybrid breeding. Trends Plant Sci.-65. https://doi.org/10.1016/j.tplants.2017.10.001

    (12) Cai, W., & Zhang, D#. The role of receptor-like kinases in regulating plant male reproduction. Plant Reprod. 2018, 31(1): 77-87. https://doi.org/10.1007/s00497-018-0332-7

    (13) Li R, Quan S, Yan X, Biswas S, Zhang DB, Shi JX#. Molecular characterization of genetically-modified crops: Challenges and strategies. Biotechnol Adv. 2017, 35 (2): 302–309.  https://doi.org/10.1016/j.biotechadv.2017.01.005

    (14) Devis DL, Davies JM, Zhang DB#. Molecular features of grass allergens and development of biotechnological approaches for allergy prevention. Biotechnol Adv. 2017, 35(5): 545-556. https://doi.org/10.1016/j.biotechadv.2017.05.005

    (15) Yang LT#, Quan S, Zhang DB. Endogenous reference genes and their quantitative real-time PCR assays for genetically modified bread wheat (Triticum aestivum L.) detection. . https://doi.org/10.1007/978-1-4939-7337-8_16

    (16) Singh P, Kim YJ, Zhang DB, Yang DC#. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016, 34(7): 588-599. https://doi.org/10.1016/j.tibtech.2016.02.006

    (17) Hong J, Yang LT, Zhang DB, Shi JX#. Plant metabolomics: An indispensable system biology tool for plant science. Int J Mol Sci. 2016, 17(6): E767. https://doi.org/10.3390%2Fijms17060767

    (18) Dreni L# and Zhang DB. Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes. J Exp Bot. 2016, 67 (6): 1625-1638. https://doi.org/10.1093/jxb/erw046

    (19) Zhang DB# and Liang WQ. Improving food security: Using male fertility for hybrid seed breeding. Science. .

    (20) Zhao GC, Shi JX, Liang WQ, Zhang DB#. ATP binding cassette G transporters and plant male reproduction. Plant Signal Behav. 2016, 11, e1136764. https://doi.org/10.1080/15592324.2015.1136764

    (21) Shi JX, Cui MH, Yang L, Kim YJ, Zhang DB#. Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci. 2015, 20(11): 741-753. https://doi.org/10.1016/j.tplants.2015.07.010

    (22) Yuan Z and Zhang DB#. Roles of jasmonate signalling in plant inflorescence and flower development. Curr Opin Plant Biol. 2015, 27: 44-51. https://doi.org/10.1016/j.pbi.2015.05.024

    (23) Kim YJ, Zhang DB#, Yang DC#. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv. 2015, 33(6): 717-35. https://doi.org/10.1016/j.biotechadv.2015.03.001

    (24) Zhang DB# and Yuan Z. Molecular control of grass inflorescence development. Annu Rev Plant Biol. 2014, 65: 553-78. https://doi.org/10.1146/annurev-arplant-050213-040104

    (25)   Milavec, M., Dobnik, D., Yang, L., Zhang DB, Gruden, K., & Žel, J#.  GMO quantification: valuable experience and insights for the future. Anal Bioanal Chem. 2014, 406(26): 6485-6497. https://doi: 10.1007/s00216-014-8077-0.

    (26) Zhang DB# and Yang L. Specification of tapetum and microsporocyte cells within the anther. Curr Opin Plant Biol. . https://doi.org/10.1016/j.pbi.2013.11.001

    (27) Zhang DB#, and Guo JC. The development and standardization of testing methods for genetically modified organisms and their derived products. J Integr Plant Biol., 2011, 53:539-51. https://doi.org/10.1111/j.1744-7909.2011.01060.x

    (28) Li H, and Zhang DB#. Biosynthesis of anther cuticle and pollen exine in rice. Plant Signal Behav. 2010, 5(9): 1121-1123. https://doi.org/10.4161/psb.5.9.12562

    (29) Zhang DB#, and Wilson ZA. Stamen specification and anther development in rice. Chin Sci Bulletin. 2009, 54(14): 2342-2353. https://doi.org/10.1007/s11434-009-0348-3

    (30) Wilson ZA#, and Zhang DB. From Arabidopsis to rice, pathways in pollen development. J Exp Bot. 2009, 60(5): 1479-1492. https://doi.org/10.1093/jxb/erp095

    (31) Chu HW, and Zhang DB#. The shoot apical meristem size regulated by FON4 in rice. Plant Signal Behav. 2007, 2(2): 115-6. https://doi.org/10.4161%2Fpsb.2.2.3641

    Research papers (# corresponding author):

    (32) Xu W, Zhu WW, Yang L, Liang WQ, Li H, Yang L, Chen MJ, Luo ZJ, Huang GQ, Duan L, Dreni L#, Zhang DB#. SMALL REPRODUCTIVE ORGANS, a SUPERMAN-like transcription factor, regulates stamen and pistil growth in rice. New Phytol. 2022; 233(4): 1701-1718. https://doi.org/10.1111/nph.17849

    (33) Liu ZY, Østerlund I, Ruhnow F, Cao YR, Huang GQ, Cai WG, Zhang J, Liang WQ, Nikoloski Z, Persson S, Zhang DB#. Fluorescent cytoskeletal markers reveal associations between the actin and microtubule cytoskeleton in rice cells. Development. 2022. dev.200415. https://doi.org/10.1242/dev.200415

    (34) Chang SW, Huang GQ, Wang DX, Zhu WW, Shi JX, Yang LT, Liang WQ, Xie Q, Zhang DB#. Rice SIAH E3 Ligases interact with RMD formin and affect plant morphology. Rice 2022;15: 6. https://doi.org/10.1186/s12284-022-00554-8

    (35)  Bai SX, Hong J, Su S, Li ZK, Wang WS, Shi JX, Liang WQ, Zhang DB#. Genetic basis underlying tiller               angle in rice (Oryza sativa L.) by genome-wide association study. Plant Cell Reports. 2022.                                   http://dx.doi.org/10.21203/rs.3.rs-1348432/v1

    (36) Zhu ZB, Li R, Zhang HW, Wang JY, Lu YY, Zhang DB, Yang LT#. PAM-free loop-mediated isothermal amplification coupled with CRISPR/Cas12a cleavage (Cas-PfLAMP) for rapid detection of rice pathogens. Biosens Bioelectron. 2022; 204:114076. https://doi.org/10.1016/j.bios.2022.114076

    (37) Zong J*, Wang L*, Zhu L*, Bian LL, Zhang B, Chen XF, Huang GQ, Zhang XL, Fan JY, Cao LM, Coupland G, Liang WQ, Zhang DB, Yuan Z#. A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems. New Phytol. 2022, 4(2): 494-512. https://doi.org/10.1111/nph.18008

    (38) Qin H, Pandey BK, Li YX, Huang GQ, Wang J, Quan RD, Zhou JH, Zhou Y, Miao YC, Zhang DB, Bennett MJ, Huang RF#. Orchestration of ethylene and gibberellin signals determines primary root elongation in rice. The Plant Cell. 2022; 34(4): 1273-1288. https://doi.org/10.1093/plcell/koac008

    (39) Kim JH, Silva J, Park CW, Kim YH, Park NY, Sukweenadhi J,  Yu JP, Shi JX, Zhang DB, Kim KK, Son HJ, Park HC, Hong CO, Lee KM, Kim YJ#. Overexpression of the Panaxginseng CYP703 alters cutin composition of reproductive tissues in Arabidopsis. Plants (Basel), 2022;11(3):383. https://doi.org/10.3390/plants11030383

    (40) Zhu WW, Yang L, Wu D, Meng QC, Deng X, Huang GQ, Zhang J, Chen XF, Ferrándiz C, Liang WQ, Dreni L#, Zhang DB#. Rice SEPALLATA genes OsMADS5 and OsMADS34 cooperate to limit inflorescence branching by repressing the TERMINAL FLOWER1-like gene RCN4. New Phytol. 2022; 233(4): 1682-1700. https://doi.org/10.1111/nph.17855

    (41)  Li JB, Wang DX, Sun SY, Sun LL, Zong J, Lei YQ, Yu J, Liang WQ, Zhang DB#. The regulatory role of Carbon Starved Anther-mediated photoperiod-dependent male fertility in rice. Plant Physiol. 2022. https://doi.org/10.1093/plphys/kiac076

    (42) Zhang HW, Li R, Guo YK, Zhang YC, Zhang DB, Yang LT#. LIFE-Seq: a universal Large Integrated DNA Fragment Enrichment Sequencing strategy for deciphering the transgene integration of genetically modified organisms. Plant Biotech J. 2021. https://doi.org/10.1111/pbi.13776

    (43)Yang LT#, Chen Y, Li R, Xu WT, Cui J, Zhang DB, Zhang XJ. Universal LNA probe-mediated multiplex droplet digital polymerase chain reaction for ultrasensitive and accurate quantitative analysis of genetically modified organisms. J Agric Food Chem. 2021;69(5):1705-1713. https://doi.org/10.1021/acs.jafc.0c06433

    (44) Pandey, BK, Huang, GQ., Bhosale, R., Hartman S., Sturrock CJ., Jose L., Martin OC., Karady M, Voesenek L.A.C.J, Ljung K., Lynch JP., Brown KM., Whalley WR., Mooney SJ., Zhang DB#., Bennett MJ#. Plant roots sense soil compaction through restricted ethylene diffusion. Science. 2021, 371(6526):276-280. https://doi.org/10.1126/science.abf3013

    (45) Li G., Kuijer HNJ., Yang XJ,Liu HR., Shen CQ., Shi J., Betts N., Tucker M.R.,Liang WQ., Waugh R., Burton RA, Zhang DB#. MADS1 maintains barley spike morphology at high ambient temperatures. Nat Plants. 2021, 7(8):1093-1107. https://doi.org/10.1038/s41477-021-00957-3

    (48) Li SQ, Cao LC, Chen XF, Liu YL, Persson S, Hu JP, Chen MJ, Chen ZB, Zhang DB, Yuan Z#. A synthetic biosensor for mapping dynamic responses and spatio-temporal distribution of jasmonate in rice.  Plant Biotech J. 2021, 19(12): 2392-2394. https://doi.org/10.1111/pbi.13718

    (47) Chang SW, Ren ZH, Liu C, Du PZ, Li JB, Liu ZY, Zhang FL, Hou HL, Shi JX, Liang WQ, Yang LT, Ren HY, Zhang DB#. OsFH3 encodes a type II formin required for rice morphogenesis. Int J Mol Sci. 2021;22(24):13250. https://doi.org/10.3390%2Fijms222413250

    (48) Chang SW, Yang LT, Liang WQ, Xie Q, Huang GQ, Wang DX, Zhu WW, Zhang DB#. Rice SIAH E3 ligases interact with RMD formin and affect plant morphology. Rice. 2022, 15: 6. https://doi.org/10.1186%2Fs12284-022-00554-8

    (49) Cao LC, Tian JQ, Liu YL, Chen XF, Li SQ, Persson S, Lu D, Chen MJ, Luo ZJ, Zhang DB, Yuan Z#. Ectopic expression of OsJAZ6, which interacts with OsJAZ1, alters JA signaling and spikelet development in rice. The Plant J. 2021, 18(4): 1083-1096. https://doi.org/10.1111/tpj.15496

    (50) Sun LL, Yuan Z, Wang DX, Li J, Shi JB, Hu YY, Yu J, Chen XF, Chen SX, Liang WQ, Zhang DB#. Carbon Starved Anther modulates sugar and ABA metabolism to protect rice seed germination and seedling fitness. Plant Physiol. 2021, 187(4): 2405-2418. https://doi.org/10.1093/plphys/kiab391

    (51) Sun SY, Wang DX, Li JB, Lei YQ, Li G, Cai WG, Zhao X, Liang WQ, Zhang DB#. Transcriptome analysis reveals photoperiod-associated genes expressed in rice anthers. Front Plant Sci. 2021, 12: 621561. https://doi.org/10.3389/fpls.2021.621561

    (52) Shi J, Shi JX, Liang WQ, Zhang DB#. Integrating GWAS and transcriptomics to identify genes involved in seed dormancy in rice. Theor Appl Genet. 2021, 134: 3553–3562. https://doi.org/10.1007/s00122-021-03911-1

    (53) Su S, Hong J, Chen XF, Zhang CQ, Chen MJ, Luo ZJ, Chang SW, Bai SX, Liang WQ, Liu QQ, Zhang DB#. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice. Plant Biotechnol J. 2021, 19(11): 2304-2318. https://doi.org/10.1111/pbi.13661

    (54) Bai SX, Hong J, Li L, Su S, Li Z, Wang W, Zhang F, Liang WQ, Zhang DB#. Dissection of the genetic Basis of rice panicle architecture using a genome-wide association study. Rice. 2021, 14(1): 77. https://doi.org/10.1186/s12284-021-00520-w

    (55) Huang GQ, Hu H, van de Meene A, Zhang J, Dong L, Zheng S, Zhang FL, Betts NS, Liang WQ, Bennett MJ, Persson S, Zhang DB#. AUXIN RESPONSE FACTOR 6 and 7 control the flag leaf angle in rice by regulating secondary cell wall biosynthesis of lamina joints. The Plant Cell.  2021, 33(9): 3120-3133. https://doi.org/10.1093/plcell/koab175

    (56) Wang DX, Li JB, Sun LL, Hu YY, Yu J, Wang CH, Zhang FL, Hou HL, Liang WQ, Zhang DB#. Two rice MYB transcription factors maintain male fertility in response to photoperiod by modulating sugar partitioning. New Phytol. 2021, 231(4): 1612-1629. https://doi.org/10.1111/nph.17512

    (57) Kuijer HNJ, Shirley NJ, Khor SF, Shi J, Schwerdt J, Zhang DB, Li G, Burton RA. Transcript profiling of MIKCc MADS-box genes reveals conserved and novel roles in barley inflorescence development. Front Plant Sci. 2021, 12: 705286. https://doi.org/10.3389/fpls.2021.705286

    (58) Zhang, X., Zhao, G., Tan, Q. Yuan H, Betts N, Zhu L, Zhang DB, Liang WQ#. Rice pollen aperture formation is regulated by the interplay between OsINP1 and OsDAF1. Nat. Plants. 2020, 6, 394–403. https://doi.org/10.1038/s41477-020-0630-6

    (59) Hu Y, Wang L Jia R, Liang WQ, Zhang XL, Xu J, Chen XF, Lu D, Chen MJ, Luo ZJ, Xie JY, Cao LM, Xu B, Yu Y, Persson S, Zhang DB, Yuan Z#. Rice transcription factor MADS32 regulates floral patterning through interactions with multiple floral homeotic genes. J Exp Bot. 2021, 72(7): 2434-2449. https://doi.org/10.1093/jxb/eraa588

    (60) Uzair M, Xu D, Schreiber L, Shi JX, Liang WQ, Jung KH, Chen MJ, Luo ZJ, Zhang Y, Yu J, Zhang, DB#. PERSISTENT TAPETAL CELL2 is required for normal tapetal programmed cell death and pollen wall patterning. Plant Physiol. 2020, 182(2): 962-976. https://doi.org/10.1104/pp.19.00688

    (61) Mondol PC, Xu DW, Duan L, Shi JX, Wang C, Chen X, Chen MJ, Hu J, Liang WQ#, Zhang, DB#. Defective Pollen Wall 3 (DPW3), a novel alpha integrin-like protein, is required for pollen wall formation in rice. New Phytol. 2020, 225(2): 807-822. https://doi.org/10.1111/nph.16161

    (62) Biswas S, Li R, Hong J, Zhao XX, Yuan Z, Zhang DB, Shi JX#. Effective identification of CRISPR/Cas9-induced and naturally occurred mutations in rice using a multiplex ligation-dependent probe amplification-based method. Theor Appl Genet. 2020, 133, 2323–2334. https://doi.org/10.1007/s00122-020-03600-5

    (63)  Kim EJ, Park SW, Hong WJ, Silva J, Liang WQ, Zhang DB, Jung KH, Kim YJ#. Genome-wide analysis of RopGEF gene family to identify genes contributing to pollen tube growth in rice (Oryza sativa). BMC Plant Biol. 2020, 20(1): 95. https://doi.org/10.1186/s12870-020-2298-5

    (64) Yoon JM, Cho LH, Yang WZ, Pasriga R, Wu YF, Hong WJ, Bureau C, Wi SJ, Zhang T, Wang YC, Zhang DB, Jung KH, Park KY, Périn C, Zhao YD, An GH#. Homeobox transcription factor OsZHD2 promotes root meristem activity in rice by inducing ethylene biosynthesis J Exp Bot. 2020, 71(18): 5348-5364. https://doi.org/10.1093/jxb/eraa209

    (65) Silva, J., Sukweenadhi, J., Myagmarjav, D. Mohanan P, Yu JP, Shi JX, Jung KH, Zhang DB, Yang DC#,Kim YJ#. Overexpression of a novel cytochrome P450 monooxygenase gene, CYP704B1, from Panax ginseng increase biomass of reproductive tissues in transgenic Arabidopsis. Mol Biol Rep. 2020, 47,4507–4518. https://doi.org/10.1007/s11033-020-05528-x

    (66) Hu CY, Rao J, Song Y, Chan SA, Tohge TY, Cui B, Lin H, Fernie AR, Zhang DB, Shi JX#. Dissection of flag leaf metabolic shifts and their relationship with those occurring simultaneously in developing seed by application of non-targeted metabolomics. PLoS One. 2020, 15(1): e0227577. https://doi.org/10.1371/journal.pone.0227577

    (67) Li HJ,  Kim YJ, Yang L, Liu Z, Zhang J, Shi HT, Huang GQ, Persson S, Zhang DB, Liang WQ#. Grass-specific EPAD1 is essential for pollen exine patterning in rice. The Plant Cell. 2020, 32(12):3961-3977. https://doi.org/10.1105/tpc.20.00551

    (68) Su Y,Liu J, Liang WQ, Dou Y, Fu R, Li W, Feng C, Gao C, Zhang DB, Kang ZS, Li HF#. Wheat AGAMOUS LIKE 6 transcription factors function in stamen development by regulating the expression of TaAPETALA3. Development. 2019, 146(20): dev177527. https://doi.org/10.1242/dev.177527

    (69) Xu DW, Mondol PC, Ishiguro S, Shi JX, Zhang DB, Liang WQ#. NERD1 is required for primexine formation and plasma membrane undulation during microsporogenesis in Arabidopsis thaliana. aBIOTECH. 2020, 1: 233-245. https://doi.org/10.1007/s42994-020-00022-1

    (70) Cao YR, Cai WG, Chen XF, Chen MJ, Chu JJ, Liang WQ, Persson S, Liu ZY, Zhang DB#. Bright fluorescent vacuolar marker lines allow vacuolar tracing across multiple tissues and stress conditions in rice. Int J Mol Sci. 2020, 21(12): 4203. https://doi.org/10.3390/ijms21124203

    (71) Liu HR, Li, G, Yang XJ, Kuijer HNJ, Liang WQ, Zhang DB#. Transcriptome profiling reveals phase-specific gene expression in the developing barley inflorescence. Crop J. 2020, 8(1): 71-86.  https://doi.org/10.1016/j.cj.2019.04.005

    (72) Biswas S, Tian JQ, Li R, Chen XF, Luo ZJ, Chen MJ, Zhao XX, Zhang DB, Persson S, Yuan Z#, Shi JX#. Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding. J Genet Genomics. 2020, 47(5): 273-280. https://doi.org/10.1016/j.jgg.2020.04.004

    (73) Shi, Q, Zhang Y, To V. T, Shi J, Zhang DB and Cai WG#. Genome-wide characterization and expression analyses of the auxin/indole-3-acetic acid (Aux/IAA) gene family in barley (Hordeum vulgare L.). Sci Rep. 2020, 10(1): 10242. https://doi.org/10.1038/s41598-020-66860-7

    (74) To, V. T., Shi Q., Zhang YY., Shi J., Shen CQ., Zhang DB.  and Cai WG#. Genome-wide analysis of the GRAS gene family in barley (Hordeum vulgare L.). Genes (Basel). 2020, 11(5): 553. https://doi.org/10.3390/genes11050553

    (75) Liu, H., Li, G., Yang, X., Kuijer, H., Liang, W, & Zhang, DB#. Transcriptome profiling reveals phase-specific gene expression in the developing barley inflorescence. Crop J. 2020, 8:71-86. https://doi.org/10.1016/j.cj.2019.04.005

    (76) Gu WH, Zhang DB, Qi YP, Yuan Z#. Generating photoperiod-sensitive genic male sterile rice lines with CRISPR/Cas9.  Methods Mol Biol. 2019, 1917: 97-107. https://doi.org/10.1007/978-1-4939-8991-1_8

    (77) Song Y, Li G, Nowak J, Zhang XQ, Xu DW, Yang X, Huang GQ, Liang WQ, Yang LT, Wang C, Bulone V, Nikoloski Z, Hu J, Persson S, Zhang, DB#. The rice actin-binding protein RMD regulates light-dependent shoot gravitropism. Plant Physiol. 2019, 181(2): 630-644. https://doi.org/10.1104/pp.19.00497

    (78) Siddique K, Wei JJ, Li R, Zhang DB, and Shi JX#. Identification of T-DNA insertion site and flanking sequence of a genetically modified maize event IE09S034 using next-generation sequencing technology. Mol Biotech. 2019, 61: 694–702. https://doi.org/10.1104/pp.19.00497

    (79)  Lee DW, Lee SK, Rahman MM, Kim YJ, Zhang DB, and Jeon JS#, The role of rice vacuolar invertase2 in seed size control. Mol Cells. 2019, 42(10): 711-720. https://doi.org/10.14348/molcells.2019.0109

    (80) Li, R., Shi, J., Liu, B., Wang, C., Zhang, DB., Zhao, X., & Yang, L#. Inter-laboratory validation of visual loop-mediated isothermal amplification assays for GM contents screening. Food Chem. 2019, 274: 659-663. https://doi.org/10.1016/j.foodchem.2018.07.010

    (81) Liu, B., Mo, W., Zhang, DB., De Storme, N., & Geelen, D#. Cold influences male reproductive development in plants: a hazard to fertility, but a window for evolution. Plant Cell Physiol. 2019, 60(1): 7-18. https://doi.org/10.1093/pcp/pcy209 

    (82) Xu, D., Qu, S., Tucker, M., Zhang, DB., Liang, W., & Shi, J#. Ostkpr1 functions in anther cuticle development and pollen wall formation in rice. BMC Plant Biol. 2019, 19(1):13. https://doi.org/10.1186/s12870-019-1711-4

    (83) Biswas, S., Li, R., Yuan, Z., Zhang, DB., Zhao, X., & Shi, J#. Development of methods for effective identification of CRISPR/Cas9-induced indels in rice. Plant Cell Rep. 2019, 38(4): 503-510. https://doi.org/10.1007/s00299-019-02392-3

    (84) Zhou, Y., Lin, H., Zhang, DB., Wang, C., & Yu, J#. The function of the polyketide synthase OsPKS1 and OsPKS2 in regulating pollen wall formation in rice. Sci Agri Sin. 2019, 52(8): 1295-1307. 10.3864/j.issn.0578-1752.2019.08.001

    (85) Tian JQ, Cao LC, Chen XF, Chen MJ, Zhang P, Cao L, Persson S, Zhang DB, Yuan Z#. The OsJAZ1 degron modulates jasmonate signaling sensitivity during rice development. Development. 2019, 146(4): dev173419. https://doi.org/10.1242/dev.173419

    (86) Bi H, Shi J, Kovalchuk N, Luang S, Bazanova N, Chirkova L, Zhang DB, Shavrukov Y, Stepanenko A, Tricker P, Langridge P, Hrmova M, Lopato S, Borisjuk N#. Overexpression of the TaSHN1 transcription factor in bread wheat    leads to leaf surface modifications, improved drought tolerance and no yield penalty under controlled growth conditions. Plant Cell & Environ. 2018, 41(11): 2549-2566. https://doi.org/10.1111/pce.13339

    (87) Huang GQ, Liang WQ, Sturrock CJ, Pandey BK, Giri J, Mairhofer S, Wang D, Muller L, Tan HX, York LM, Yang J, Song Y, Kim YJ, Qiao Y, Xu J, Kepinski S, Bennett MJ#, Zhang DB#. Rice actin binding protein RMD controls crown root angle in response to external phosphate. Nat Commun. 2018, 9(1): 2346. https://doi.org/10.1038/s41467-018-04710-x

    (88) Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes RR, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis KC, Xu J, Sun C, Fu B, Zhang H, Gao Y, Zhao X, Shen F, Cui X, Yu H, Li Z, Chen M, Detras J, Zhou Y, Zhang X, Zhao Y, Kudrna D, Wang C, Li R, Jia B, Lu J, He X, Dong Z, Xu J, Li Y, Wang M, Shi J, Li J, Zhang DB, Lee S, Hu W, Poliakov A, Dubchak I, Ulat VJ, Borja FN, Mendoza JR, Ali J, Li J, Gao Q, Niu Y, Yue Z, Naredo MEB, Talag J, Wang X, Li J, Fang X, Yin Y, Glaszmann JC, Zhang J, Li J, Hamilton RS, Wing RA, Ruan J, Zhang G, Wei C, Alexandrov N, McNally KL, Li Z, Leung H#. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature. https://doi.org/10.1038/s41586-018-0063-9

    (89) Kim, Y., Joo, S., Shi, J., Hu, C., Quan, S., Hu, J., Zhang, DB#. Metabolic dynamics and physiological adaptation of Panax ginseng during development. Plant Cell Rep. 2018, 37(3): 1-18. https://doi.org/10.1007/s00299-017-2236-7

    (90) Li, R., Shi, J., Liu, B., Zhang, DB., Zhao, X., & Yang, L#. International collaborative ring trial of four gene-specific loop-mediated isothermal amplification assays in GMO analysis. Food Control. 2018, 84: 278-283. http://dx.doi.org/10.1016/j.foodcont.2017.08.012

    (91) Callens, C., Tucker, M., Zhang, DB., & Wilson, Z#. Dissecting the role of MADS-box genes in monocot floral development and diversity. J Exp Bot. 2018, 69(10): 2435-2459. https://doi.org/10.1093/jxb/ery086

    (92) Gong, L#., Lin, K., Wang, T., Liu, CL#., Yuan, Z., Zhang, DB., & Hong, J. Image-based on-panicle rice [Oryza sativa L.] grain counting with a prior edge wavelet correction model. Agronomy. 2018, 8(6): 911-914. https://doi.org/10.3390/agronomy8060091

    (93) Yoon, H., Yang, J., Liang, W., Zhang, DB., & An, G#. OsVIL2 regulates spikelet development by controlling regulatory genes in Oryza sativa. Front Plant Sci. 2018, 9:12. https://doi.org/10.3389/fpls.2018.00102

    (94) Tao, J., Liang, W., An, G., & Zhang, DB#. OSMADS6 controls flower development by activating rice factor of dna methylation like1. Plant Physiol. 2018, 177(2): 713-727. https://doi.org/10.1104/pp.18.00017

    (95) Giri J, Bhosale R, Huang G, Pandey BK, Parker H, Zappala S, Yang J, Dievart A, Bureau C, Ljung K, Price A, Rose T, Larrieu A, Mairhofer S, Sturrock CJ, White P, Dupuy L, Hawkesford M, Perin C, Liang W, Peret B, Hodgman CT, Lynch J, Wissuwa M, Zhang DB, Pridmore T, Mooney SJ, Guiderdoni E, Swarup R, Bennett MJ#. Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nat Commun. 2018, 9(1): 1810. https://doi.org/10.1038/s41467-018-03850-4

    (96) Wu D, Liang WQ, Zhu WW, Chen MJ, Ferrándiz C, Burton RA, Dreni L, Zhang DB#. Loss of LOFSEP transcription factor function converts spikelet to leaf-like structures in rice. Plant Physiol. 2018, 176(2):1646-1664. https://doi.org/10.1104/pp.17.00704

    (97) Li G, Yang XJ, Zhang XQ, Song Y, Liang WQ, Zhang DB#. Rice Morphology Determinant-mediated actin filament organization contributes to pollen tube growth. Plant Physiol. 2018, 177(1): 255-270. https://doi.org/10.1104/pp.17.01759

    (98) Yang XJ, Li G, Tian YS, Song Y, Liang WQ, Zhang DB#. A rice glutamyl-tRNA synthetase modulates early anther cell division and patterning. Plant Physiol. 2018, 177(2):728-744. https://doi.org/10.1104/pp.18.00110

    (99) Shao, N., Chen, J., Hu, J., Li, R., Zhang, DB., Guo, S., Tao, S#. Visual detection of multiple genetically modified organisms in a capillary array. Lab on a Chip. 2018, 17(3), 521-529. https://doi.org/10.1039/c6lc01330a

    (100) Yu JP, Han JJ, Kim, Song M, Yang Z, He Y,Fu RF, Luo ZJ, Hu JP, Liang WQ, Zhang DB#. Two rice receptor-like kinases maintain male fertility under changing temperatures. PNAS. 2017, 114 (46):12327–12332. https://doi.org/10.1073/pnas.1705189114

    (101) Silva L, Kim YJ, Xiao DX, Sukweenadhi J, Hu TT, Kwon WS, Hu JP, Yang DC, Zhang DB#. Cytological analysis of ginseng carpel development. Protoplasma. 2017, 254: 1909–1922. https://doi.org/10.1007/s00709-017-1081-4

    (102) Meng QC, Li XF, Zhu WW, Yang L, Liang WQ, Dreni L#, Zhang DB#. Regulatory network and genetic interactions established by OsMADS34 in rice inflorescence and spikelet morphogenesis. J Integr Plant Biol. 2017, 59(9): 693–707. https://doi.org/10.1111/jipb.12594

    (103) Zhu XL, Yu J, Shi JX, Tohge T, Fernie AR, Meir S, Aharoni A, Xu DW, Zhang DB, Liang WQ#. The polyketide synthase OsPKS2 is essential for pollen exine and Ubisch body patterning in rice. J Integr Plant Biol. 2017, 59(9): 612-628.  https://doi.org/10.1111/jipb.12574

    (104) Yang XJ, Liang WQ, Chen MJ, Zhang DB, Zhao XX, Shi, JX#. Rice fatty acyl-CoA synthetase OsACOS12 is required for tapetum programmed cell death and male fertility. Planta. 2017. 246(1): 105-122. https://doi.org/10.1007/s00425-017-2691-y

    (105) Sun C, Hu Z, Zheng T, Lu K, Zhao Y, Wang W, Shi JX, Wang C, Lu J, Zhang DB, Li Z, Wei CC#. RPAN: rice pan-genome browser for 3000 rice genomes. Nucleic Acids Res. 2017, 45(2): 597-605. https://doi.org/10.1093/nar/gkw958

    (106) Liu Z, Lin S, Shi JX, Yu J, Zhu L, Yang XJ, Zhang DB, Liang WQ#. Rice No Pollen 1 (NP1) is required for anther cuticle formation and pollen exine patterning. Plant J. 2017, 91(2): 263-277. https://doi.org/10.1111/tpj.13561

    (107) Yang J, Yuan Z, Meng Q, Huang G, Périn C, Bureau C, Meunier AC, Ingouff M, Bennett M, Ao P, Liang WQ*, Zhang DB#. Dynamic regulation of auxin response during rice development revealed by newly established hormone biosensor markers. Front Plant Sci. 2017, 8: 256. https://doi.org/10.3389/fpls.2017.00256

    (108) Xu W, Tao JH, Chen MJ, Dreni L, Luo ZJ, Hu Y, Liang WQ, Zhang DB#. Interactions between Floral Organ Number 4 and floral homeotic genes in regulating rice flower development. J Exp Bot. 2017, 68(3): 483-498. https://doi.org/10.1093/jxb/erw459

    (109) Men X, Shi JX, Liang WQ, Zhang QF, Lian GB, Quan S, Zhu L, Luo ZJ, Chen MJ, Zhang DB#. Glycerol-3-Phosphate Acyltransferase 3 (OsGPAT3) is required for anther development and male fertility in rice. J Exp Bot. 2017, 68(3): 513-526. https://doi.org/10.1093%2Fjxb%2Ferw445

    (110) Wang C, Higgins J, He Y, Lu PL, Zhang DB, Liang WQ#. Resolvase OsGEN1 mediates DNA repair by homologous recombination. Plant Physiol. 2017, 173: 1316-1329. https://doi.org/10.1104/pp.16.01726

    (111)  Xu DW, Shi JX, Rautengarten C, Yang L, Qian XL, Uzair M, Zhu L, Luo Q, An G, Wabmann F, Schreiber L, Heazlewood JL, Scheller HV, Hu JP, Zhang DB, Liang WQ#. Defective Pollen Wall 2 (DPW2) Encodes an Acyl Transferase Required for Rice Pollen Development. Plant Physiol. 2017, 173(1): 240-255. https://doi.org/10.1104/pp.16.00095

    (112)  Li, Z., Li, X., Wang, C., Song, G., Pi, L., Zheng, L., Zhang DB., Yang, L#. One novel multiple-target plasmid reference molecule targeting eight genetically modified canola events for genetically modified canola detection. J Agric Food Chem. 2017, 65(38): 8489-8500. https://doi.org/10.1021/acs.jafc.7b02453

    (113)  Liu, H., Cui, B., Xu, Y., Hu, C., Liu, Y., Qu, G., Zhang DB., Shi, J#. Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chemico-Biological Interactions. 2017, 277: 21-32. https://doi.org/10.1016/j.cbi.2017.08.008

    (114)  Chen, J., Shao, N., Hu, J., Li, R., Zhu, Y., Zhang, DB., Tao, S#.Visual detection of multiple nucleic acids in a capillary array. J Visual Exp. 2017, 129: 56597. https://doi.org/10.3791/56597

    (115)  Lin, H., Yu, J., Pearce, S., Zhang, DB., & Wilson, Z#. RiceAntherNet: a gene co-expression network for identifying anther and pollen development genes. Plant J. 2017, 92(6): 1076-1091. https://doi.org/10.1111/tpj.13744

    (116) Ye, Z., Xu, J., Shi, J., Zhang, DB., & Chye, M#. Kelch-motif containing acyl-CoA binding proteins AtACBP4 and AtACBP5 are differentially expressed and function in floral lipid metabolism. Plant Mol Biol. 2017, 93(1-2): 209-225. https://doi.org/10.1007/s11103-016-0557-5

    (117) Ferguson, A., Pearce, S., Band, L., Yang, C., Ferjentsikova, I., King, J., Zhang, DB., Wilson, Z#.  Biphasic regulation of the transcription factor ABORTED MICROSPORES (AMS) is essential for tapetum and pollen development in Arabidopsis. New Phytologist. 2017, 213(2): 778-790. https://doi.org/10.1111/nph.14200

    (118)  Zhou, F., Wang, C., Gutensohn, M., Jiang, L., Zhang, P., Zhang, DB., Lu, S#. A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice. PNAS. 2017, 114(26): 6866-6871. https://doi.org/10.1073/pnas.1705689114

    (119) Hu C, Li Q, Shen X, Quan S, Lin H, Duan L, Wang Y, Luo Q, Qu G, Han Q, Lu Y, Zhang DB, Yuan Z#, Shi J#. Characterization of factors underlying the metabolic shifts in developing kernels of colored maize. Sci Rep 2016, 6:35479. https://doi.org/10.1038/srep35479

    (120) Kim YJ, Jang MG, Zhu L, Silva J, Zhu XL, Sukweenadhi J, Kwon WS, Yang DC, Zhang DB#. Cytological characterization of anther development in Panax ginseng Meyer. Protoplasma. 2016, 253:1111–1124. https://doi.org/10.1007/s00709-015-0869-3

    (121) Kim YJ, Silva J, Zhang DB, Shi JX, Joo SC, Jang MG, Kwon WS, Yang DC#, Development of interspecies hybrids to increase ginseng biomass and ginsenoside yield. Plant Cell Rep. 2016, 35: 779–790. https://doi.org/10.1007/s00299-015-1920-8

    (122) Fei QL, Yang L, Liang WQ, Zhang DB#, Meyers BC#. Dynamic changes of small RNAs in rice spikelet development reveal specialized reproductive phasiRNA pathways. J Exp Bot. 2016, 67(21): 6037-6049. https://doi.org/10.1093/jxb/erw361

    (123) Yu J, Meng ZL, Liang WQ, Kudla J, Tucker MR, Luo ZJ, Chen MJ, Xu DW, Zhao GC, Wang J, Zhang SY, Kim YJ, Zhang DB#. A rice Ca2+ binding protein is required for tapetum function and pollen formation. Plant Physiol. 2016, 172(3): 1772-1786. https://doi.org/10.1104/pp.16.01261

    (124) Fu M, Wang C, Xue F, Higgins J, Chen M, Zhang DB, Liang WQ#. The DNA topoisomerase VI-B subunit OsMTOPVIB is essential for meiotic recombination initiation in rice. Mol Plant. 2016, pii: S1674-2052(16)30138-1. https://doi.org/10.1016/j.molp.2016.07.006

    (125) Chen ML, Xu J, Devis DL, Shi JX, Ren K, Searle I, Zhang DB#. Origin and functional prediction of pollen allergens in plants. Plant Physiol. 2016, 172: 341-357. https://doi.org/10.1104/pp.16.00625

    (126) He Y, Wang C, Higgins J, Yu JP, Zong J, Lu PL, Zhang DB, Liang WQ#. MEIOTIC F-BOX is essential for male meiotic DNA double strand break repair in rice. The Plant Cell. 2016, 28: 1879-1893. https://doi.org/10.1105/tpc.16.00108

    (127) Yang L, Qian XL, Chen MJ, Fei QL, Meyers BC, Liang WQ, Zhang DB#. Regulatory role of OsTDL1A-MSP1 signaling in specifying anther cell identity in rice. Plant Physiol. 2016, 171: 2085-2100. http://dx.doi.org/10.1104/pp.16.00016

    (128) Yim S, Khare D, Kang J, Hwang JU, Liang WQ, Martinoia E, Zhang DB, Kang B, Lee Y#. Postmeiotic development of pollen surface layers requires two Arabidopsis ABCG-type transporters. Plant Cell Rep. 2016, 35(9): 1863-73. https://doi.org/10.1007/s00299-016-2001-3

    (129) Hu C, Ham BK, El-Shabrawi HM, Alexander D, Zhang DB, Ryals J, Lucas WJ#. Proteomics and metabolomics analyses reveal the cucurbit sieve tube system as a complex metabolic space. Plant J. 2016, 87(5): 442-54. https://doi.org/10.1111/tpj.13209

    (130)   Li QL, Zhang DB, Chen MJ, Liang WQ, Wei JJ, Qi YP, Yuan Z#. Development of japonica photo-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9. J Genet Genomics. 2016, 43: 415-419. https://doi.org/10.1016/j.jgg.2016.04.011

    (131) Hu C, Tohge T, Chan SA, Song Y, Rao J, Cui B, Lin H, Wang L, Fernie AR, Zhang DB, Shi JX#. Identification of conserved and diverse metabolic shifts during rice grain development. Sci Rep. 2016, 106: 20942. https://doi.org/10.1038/srep20942

    (132) Fan W, Zong J, Luo ZJ, Chen MJ, Zhao XX, Zhang DB, Qi YP, Yuan Z#. Development of a RAD-seq based DNA polymorphism identification software, AgroMarker Finder, and its application in rice marker-assisted breeding. PLOS ONE, 2016, 11(1): e0147187. https://doi.org/10.1371/journal.pone.0147187

    (133) Yi, J., Moon, S., Lee, Y., Zhu, L., Liang, W., Zhang, DB., & An, G#. Defective tapetum cell death 1 (DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration. Plant Physiol. 2016, 170(3): 1611-1623. https://doi.org/10.1104/pp.15.01561

    (134) Biswas, S., Fan, W., Li, R., Li, S., Ping, W., Li, S., Zhang, DB., Shi, J#. The development of DNA based              methods for the reliable and efficient identification of Nicotiana tabacum in tobacco and its derived                       products. Inter J Anal Chem. 2016, 1-6. https://doi.org/10.1155/2016/4352308

    (135) Yang, L., Qian, X., Chen, M., Fei, Q., Meyers, B., Liang, W., & Zhang, DB#. Regulatory role of a receptor-like kinase in specifying anther cell identity. Plant Physiol. 2016, 171(3): 2085-2100. https://doi.org/10.1104/pp.16.00016

    (136) Zhang, J., Gong, L., Liu, C., Huang, Y., Zhang, DB., & Yuan, Z#. Field phenotyping robot design and validation for the crop breeding. IFAC-PapersOnLine. 2016, 49(16): 281-286. https://doi.org/10.1016/j.ifacol.2016.10.052

    (137) Cheng, F., Wu, J., Zhang, J., Pan, AH., Quan, S., Zhang, DB., Yang, LT#. Development and inter-laboratory transfer of a decaplex polymerase chain reaction assay combined with capillary electrophoresis for the simultaneous detection of ten food allergens. Food chem. 2016, 199: 799-808. https://doi.org/10.1016/j.foodchem.2015.12.058

    (138)  Rao J, Yang LT, Guo JC, Quan S, Chen G, Zhao X, Zhang DB, Shi JX#. Metabolic changes in transgenic maize mature seeds over-expressing the Aspergillus niger phyA2. Plant Cell Rep. 2016. 35(2):429-37. https://doi.org/10.1007/s00299-015-1894-6

    (139)  Liu, Y., Ran, R., Hu, C., Cui, B., Xu, Y., Liu, H., Zhang, DB., Shi, JX#. The metabolic responses of HepG2 cells to the exposure of mycotoxin deoxynivalenol. World Mycot J. 2016, 9(4): 577-586. https://doi.org/10.3920/WMJ2015.1981

    (140) Zhang, DB#. Plant development and reproduction. Science Bulletin. 2016, 61(11): 825-826. https://doi.org/10.1007/s11434-016-1099-6

    (141) Hong, J., Yang, LT., Zhang, DB., & Shi, JX#. Plant metabolomics: An indispensable system biology tool for plant science. Int J Mol Sci. 2016, 17(6):767. https://doi.org/10.3390/ijms17060767

    (142) Rao, J., Yang, LT., Guo, JC., Quan, S., Chen, G., Zhao, X., Zhang, DB., Shi, JX#. Development of event-specific qualitative and quantitative PCR detection methods for the transgenic maize BVLA430101. Eur Food Res Technol. 2016, 242(8):1277-1284. https://doi.org/10.1007/s00217-015-2631-7

    (143) Rahimi, S., Kim, Y., Sukweenadhi, J., Zhang, DB., & Yang, D#. PgLOX6 encoding a lipoxygenase contributes to jasmonic acid biosynthesis and ginsenoside production in Panax ginseng. J. Exp Bot. 2016, 67(21): 6007-6019. https://doi.org/10.1093/jxb/erw358

    (144) Cui X, Lv Y, Chen ML, Nikoloski Z, Twell D, Zhang DB#. Young genes out of the male: an insight from evolutionary age analysis of the pollen transcriptome. Mol Plant. 2015, 8(6): 935-45. https://doi.org/10.1016/j.molp.2014.12.008

    (145) Zhu XL, Liang WQ, Cui X, Chen MJ, Yin CS, Luo ZJ, Zhu JY, Lucas WJ, Wang ZY and Zhang DB#.  Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein. Plant J. 2015, 2(4): 570-81. https://doi.org/10.1111/tpj.12820

    (146) Hu Y, Liang WQ, Yin CS, Yang XL, Ping BZ, Li AX, Jia R, Chen MJ, Luo ZJ, Cai Q, Zhao XX, Zhang DB, Yuan Z.# Interactions of OsMADS1 with floral homeotic genes in rice flower development. Mol Plant. 2015, 8(9): 1366-84. https://doi.org/10.1016/j.molp.2015.04.009

    (147)  Lü Y,Cui X, Li R, Huang PP, Zong J, Yao DQ, Li G, Zhang DB and Yuan Z#. Development of genome-wide insertion/deletion markers in rice based on graphic pipeline platform. J Integr Plant Biol. 2015, 57(11): 980-91. https://doi.org/10.1111/jipb.12354

    (148) Zhao GC, Shi JX, Liang WQ, Xue FY, Luo Q, Zhu L, Qu GR, Chen MJ, Schreiber L, Zhang DB#. Two ATP Binding Cassette G (ABCG) transporters, OsABCG26 and OsABCG15, collaboratively regulate rice male reproduction. Plant Physiol. 2015, 169: 2064–2079. https://doi.org/10.1104%2Fpp.15.00262

    (149) Wang, C., Li, R., Quan, S., Shen, P., Zhang, DB., Shi, JX., & Yang, LT#. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays. Anal Bioanal Chem. 2015, 407(16): 4829-4834. https://doi.org/10.1007/s00216-015-8652-z

    (150) Gao, Y., He, C., Ran, R., Zhang, DB., Li, D., Xiao, P., & Altman, E#. The resveratrol oligomers, cis- and trans-gnetin H, from Paeonia suffruticosa seeds inhibit the growth of several human cancer cell lines. J Ethnopharmacol. 2015,169: 24-33. https://doi.org/10.1016/j.jep.2015.03.074

    (151)  Wang HH, Zhang L, Cai Q, Hu Y, Jin ZM, Zhao X, Fan W, Huang Q, Luo ZJ, Chen MJ, Zhang DB, Yuan Z#. OsMADS32 interacts with PI‐like proteins and regulates rice flower development. J Integr Plant Biol. 2014, 57(5):504-13. https://doi.org/10.1111/jipb.12248

    (152) Rao J, Cheng F, Hu CY, Quan S, Lin H, Wang J, Chen GH, Zhao XX, Alexander D, Guo LN, Wang GY, Lai JS, Zhang DB, Shi JX#. Metabolic map of mature maize kernels. Metabolomics, 2014, 10: 775–787. https://doi.org/10.1007/s11306-014-0624-3

    (153) Lin H, Rao J, Shi JX, Hu CY, Cheng F, Wilson ZA, Zhang DB, Quan S# (2014) Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars. J Integr Plant Biol. 2014, 56(9): 826-36. https://doi.org/10.1111/jipb.12228

    (154) Yang XJ, Wu D, Shi JX, He Y, Pinot F, Grausem B, Yin CS, Zhu L, Chen MJ, Luo ZJ, Liang WQ and Zhang DB#. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Biol. 2014, 56(10): 979-94. https://doi.org/10.1111/jipb.12212

    (155) Wang W, Ma YY, Suo Y, Yan LM, Zhang DB and Miao C#. Crystallization and preliminary cr5stallographic analysis of defective pollen wall (DPW) protein from Oryza sativa. Acta Cryst. 2014, 70:758–760. https://doi.org/10.1107/s2053230x14008486

    (156) Li G, Liang WQ, Zhang XQ, Ren HY, Hu JP, Bennett MJ, and Zhang DB#. Rice actin-binding protein RMD is a key link in the auxin–actin regulatory loop that controls cell growth. PNAS. 2014: 111, 10377-10382. https://doi.org/10.1073/pnas.1401680111

    (157) Wang WF, Li G, Zhao J, Chu HW, Lin WH, Zhang DB, Wang ZY, Liang WQ#. DWARF TILLER1, a WUSCHEL-related homeobox transcription factor, is required for tiller growth in rice. PLoS Genet. 2014: 10, e1004154. https://doi.org/10.1371/journal.pgen.1004154

    (158) Wang J, Yang LT, Zhao XX, Li J#, and Zhang DB#. Characterization and phylogenetic analysis of allergenic tryp_alpha_amyl protein family in plants. J Agric Food Chem. 2014, 62(1): 270–278. https://doi.org/10.1021/jf402463w

    (159)  Fu ZZ, Yu J, Cheng XW, Zong X, Chen MJ, Li ZY, Zhang DB, Liang WQ#. The rice basic helix-loop-helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. The Plant Cell. 2014, 26(4): 1512-1524. https://doi.org/10.1105/tpc.114.123745

    (160) Xu J, Ding ZW, Vizcay-Barrena G, Shi JX, Liang WQ, Yuan Z, Werck-Reichhart D, Schreiber L, Wilson ZA, Zhang DB#. ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis Thaliana. The Plant Cell. 2014, 26(4): 1544-1556. https://doi.org/10.1105/tpc.114.122986

    (161) Cai Q, Yuan Z, Chen MJ, Yin CS, Luo ZJ, Zhao XX, Liang WQ, Hu JP & Zhang DB#. Jasmonic acid regulates spikelet development in rice. Nat Commun. 2014, 5(1): 3476. https://doi.org/10.1038/ncomms4476

    (162) Shao N, Jiang SM, Zhang M, Wang J, Guo SJ, Li Y, J HW, Liu CX, Zhang DB, Yang LT# and Tao SC#. MACRO: A combined microchip-PCR and microarray system for high-throughput monitoring of genetically modified organisms. Anal Chem. 2014, 86: 1269-1276. https://doi.org/10.1021/ac403630a

    (163) Qu, GR., Quan, S., Mondol, P., Xu, J., Zhang, DB., & Shi, JX#. Comparative metabolomic analysis of wild type and mads3 mutant rice anthers. J Integr Plant Biol. 2014, 56(9): 849-863. https://doi.org/10.1111/jipb.12245

    (164)  Lian, GB., Ding, ZW., Wang, Q., Zhang, DB., & Xu, J#. Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom. Sci World J. 2014, 2014: 534140. https://doi.org/10.1155/2014/534140

    (165) Wu, YF., Chu, HW., Zhou, ZG., Liang, WQ., & Zhang, DB#.  A-type CLE peptides regulate the phloem development in Arabidopsis root tip. Plant Physiol J. 2014, 50(10): 1515-1522.

    (166) Hu, C., Shi, J., Quan, S., Cui, B., Kleessen, S., Nikoloski, Z, Zhang, DB#. Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Sci Rep. 2014, 4(1): 5067. https://doi.org/10.1038/srep05067

    (167)  Yang LT, Wang CM, Holst-Jensen A, Morisset D, Lin YJ, Zhang DB#. Characterization of GM events by insert knowledge adapted re-sequencing approaches. Sci Rep. 2013, 3: 2839. https://doi.org/10.1038/srep02839

    (168)  Zhu L, Shi JX, Zhao GC, Zhang DB, and Liang WQ#. Post-meiotic Deficient Anther1 (PDA1) encodes an ABC transporter required for the development of anther cuticle and pollen exine in rice. J Integr Plant Biol. 2013, 56: 59-68. https://doi.org/10.1007/s12374-013-0902-z

    (169) Wang WF, Chu HW, Zhang DB, Liang WQ#. Fine mapping and analysis of DWARF TILLER1 in controlling rice architecture. J Genet Genomics. 2013, 40: 493–495. http://dx.doi.org/10.1016/j.jgg.2013.04.010

    (170) Wei JJ, Li FW, Guo JC, Li X, Xu JF, Wu G, Zhang DB, Yang LT#. Collaborative ring trial of the papaya endogenous reference gene and its polymerase chain reaction assays for genetically modified organism analysis. J Agric Food Chem.2013, 61: 11363–11370. https://doi.org/10.1021/jf403338a

    (171) Zhang YJ, Liang WQ, Shi JX, Xu J, Zhang DB#. MYB56 encoding a R2R3 MYB transcription factor regulates seed size in Arabidopsis thaliana. J Integr Plant Biol. 2013, 55: 1166-1178. https://doi.org/10.1111/jipb.12094

    (172)  Ran R, Wang CH, Han Z, Wu AB, Zhang DB, Shi JX#. Determination of deoxynivalenol (DON) and its derivatives: Current status of analytical methods. Food Control. 2013, 34: 138-148. https://doi.org/10.1016/j.foodcont.2013.04.026

    (173)  Rao J, Yang LT, Wang CM, Zhang DB and Shi JX#. Digital gene expression analysis of mature seeds of transgenic maize overexpressing Aspergillus niger phyA2 and its non-transgenic counterpart. GM Crops and Food. 2013, 4: 98-108. https://doi.org/10.4161/gmcr.25593

    (174)  Yang C, Zhang DB and Yang LT#. Development of event-specific PCR detection methods for genetically modified tomato Huafan No.1. J Sci Food Agri. 2013, 93: 652-660. https://doi.org/10.1002/jsfa.5908

    (175)  Huang HL, Cheng F, Wang RA, Zhang DB and Yang LT#. Evaluation of four endogenous reference Genes and their real-time PCR assays for common wheat quantification in GMOs detection. Plos One. 2013, 8: e75850. https://doi.org/10.1371/journal.pone.0075850

    (176)  Ran R, Zhang W, Cui B, Xu Y, Han Z, Wu AB, Li DW, Zhang DB, Wang CH and Shi JX#. A simple and rapid method for the determination of deoxynivalenol in human cells by UPLC-TOF-MS. Anal Methods. 5, 2013, 637-5643. https://doi.org/10.1039/C3AY41106K

    (177)  Chu HW, Liang WQ, Li J, Hong F, Wu YF, Wang LK, W J, Wu P, Liu CM, Zhang QF, Xu J# and Zhang DB#. A CLE–WOX signalling module regulates root meristem maintenance and vascular tissue development in rice. J Exp Bot. 2013, 64:13, 5359-5369. https://doi.org/10.1093/jxb/ert301

    (178)  Yun DP, Liang WQ, Dreni L, Yin CS, Zhou Z, Kater MM, Zhang DB#. OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice. Mol Plant. 2013, 6: 743-756. https://doi.org/10.1093/mp/sst003

    (179)  Zhang M, Liu YN, Chen LL, Quan S, Jiang SM, Zhang DB and Yang LT#. One simple DNA extraction device and its combination with modified visual loop-mediated isothermal amplification for rapid on-field detection of genetically modified organisms. Anal Chem. 2013, 85: 75-82. https://doi.org/10.1021/ac301640p

    (180)  Moon S., Kim SR, Zhao GC, Yi JK, Yoo YC, Jin P, Lee SW, Jung KH, Zhang DB, and An G#. Rice GLYCOSYLTRANSFERASE1 encodes a glycosyltransferase essential for pollen wall formation. Plant Physiol. 2013, 161. 1-13. https://doi.org/10.1104/pp.112.210948

    (181)  Niu NN, Liang WQ, Yang XJ, Jin WL, Wilson ZA, Hu JP, Zhang DB#. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun. 2013, 4: 1445. https://doi.org/10.1038/ncomms2396

    (182)  Zhang H, Xu, CX, He Y, Zong J, Yang XJ, Si HM, Sun ZX, Hu JP, Liang WQ, Zhang DB#. Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. PNAS. 2013,110 (1): 76-81. https://doi.org/10.1073/pnas.1213041110

    (183)  Kim, J. H., Jeong, D., Kim, Y. R., Kwon, Y. K., Rhee, G. S., Zhang DB, & Kim, H.Y#. Development of a multiplex PCR method for testing six GM soybean events. Food Control. 2013, 31(2): 366-371. https://doi.org/10.1016/j.foodcont.2012.10.015

    (184) Wu, Y., Yang, L., Cao, Y., Song, G., Shen, P., Zhang DB, & Wu, G#. Collaborative validation of an event-specific quantitative real-time PCR method for genetically modified rice event TT51-1 detection. J Agric Food Chem. 2013, 61(25): 5953-5960. https://doi.org/10.1021/jf401339k

    (185)  Tan HX, Liang WQ, Hu, JP Zhang DB#. MICROSPORE AND TAPETUM REGULATOR 1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice. Dev Cell. 2012, 22: 1127-1137. https://doi.org/10.1016/j.devcel.2012.04.011

    (186) Wang CM, Marshall A, Zhang DB, Wilson ZA#. ANAP: an integrated knowledge base for Arabidopsis protein interaction network analysis. Plant Physiol. 2012, 158(4): 1523-1533. https://doi.org/10.1104/pp.111.192203

    (187) Meng YN, Liu X, Wang S, Zhang DB, Yang LT#. Applicability of plasmid calibrant pTC1507 in quantification of TC1507 maize: an interlaboratory study. J Agric Food Chem. 2012, 60(1): 23-28. https://doi.org/10.1021/jf2034972

    (188) Guo JC, Chen L, Liu X, Gao Y, Zhang DB, Yang LT#. A multiplex degenerate PCR analytical approach targeting to eight genes for screening GMOs. Food Chem. 2012, 132(3): 1566-1573. https://doi.org/10.1016/j.foodchem.2011.11.096

    (189) Li W, Cui X, Meng ZL, Huang X, Xie Q, Wu H, Jin HL, Zhang DB, Liang WQ#. Transcriptional regulation of Arabidopsis MIR168a and ARGONAUTE1 homeostasis in ABA and abiotic stress responses. Plant Physiol. 2012, 158(3): 1279-1292. https://doi.org/10.1104/pp.111.188789

    (190)  Cui X, Wang QD, Yin WZ, Xu HY, Wilson ZA, Wei CC, Pan SY,Zhang DB#. PMRD: a curated database for genes and mutants involved in plant male reproduction. BMC Plant Biol. 2012, 12:215. https://doi.org/10.1186/1471-2229-12-215

    (191) Li, L., Tian, L., Wang, T., Jiang, Q., Luo, Z., Chen, M., Zhang, DB. , &Yuan, Z#. (2012). Preliminary study for the molecular mechanism of low amylose content in high-quality rice (Oryza sativa L.) variety 'Qingxiangruanjing'. Plant Physiol. J. 2012, 48(2): 147-155.

    (192) Zhu, L., Xu, J., & Zhang, DB#. Molecular evolution, expression and functional network prediction analysis of ABC transporter gene family in Arabidopsis thaliana. Plant Physiol. J. 2012, 48(12): 1151-1166.

    (193) Dreni L, Pilatone A, Yun DP, Erreni S, Pajoro A, Caporali E, Zhang DB, and Kater MM#. Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy. The Plant Cell. 2011, 23: 2850-2863. https://doi.org/10.1105/tpc.111.087007

    (194) Zhang DB#, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. J Genet Genomics. 2011, 38(9): 379-90. https://doi.org/10.1016/j.jgg.2011.08.001

    (195) Zhu XL, Chen L, Shen P, Jia JW, Zhang DB, Yang LT#. High sensitive detection of Cry1Ab protein using a quantum dot-based fluorescence-linked immunosorbent assay. J Agric Food Chem. 2011, 59:2184-9. https://doi.org/10.1021/jf104140t

    (196) Li HF, Liang WQ, Hu Y, Zhu L, Ying CS, Xu J, Dreni L, Kater MM, Zhang DB#. Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. The Plant Cell. 2011, 23: 2536-52. https://doi.org/10.1105/tpc.111.087262

    (197) Chen WW, Yu XH, Zhang K, Shi JX, Schreiber L, Shanklin J, Zhang DB#. Male Sterile 2 encodes a plastid-localized fatty acyl ACP reductase required for pollen exine development in Arabidopsis thaliana, Plant Physiol. 2011,157: 842-853. https://doi.org/10.1104/pp.111.181693

    (198) Shi J, Tan HX, Yu XH, Liu YY, Liang WQ, Ranathunge K, Franke RB, Schreiber L, Wang YJ, Kai GY, Shanklin J, Ma H, Zhang DB#. Defective Pollen Wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. The Plant Cell. 2011, 23: 2225-46. https://doi.org/10.1105/tpc.111.087528

    (199) Li H, Yuan Z, Vizcay-Barrena G, Yang CY, Liang WQ, Zong J, Wilson Z, Zhang DB#. Persistent tapetal cell 1 (ptc1) encodes a phd-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol. 2011, 156: 615-630. doi: 10.1104/pp.111.175760.

    (200)  Li HF, Liang WQ, Yin CS, Zhu L, and Zhang DB#. Genetic interaction of OsMADS3, DROOPING LEAF and OsMADS13 in specifying rice floral organs identities and meristem determinacy. Plant Physiol. 2011, 156: 263-274. https://doi.org/10.1104/pp.111.172080

    (201) Wang CM and Zhang DB#. A novel compression tool for efficient storage of genome resequencing data. Nucleic Acids Res. 2011,10: 1093. https://doi.org/10.1093/nar/gkr009

    (202)  Guo JC, Yang LT, Chen LL, Morisset D, Li X, Pan LW, Zhang DB#. MPIC: A High-Throughput Analytical Method for Multiple DNA Targets. Anal Chem. 2011, 83: 1579–1586. https://doi.org/10.1021/ac103266w

    (203)  Hu LF, Liang WQ, Yin CS, Cui X, Zong J, Wang X, Hu JP and Zhang DB#. Rice MADS3 regulates ROS homeostasis during late anther development. The Plant Cell. 2011, 23(2): 515-533. https://doi.org/10.1105/tpc.110.074369

    (204)  Zhang Z, Zhang Y, Tan HX, Wang Y, Li G, Liang WQ, Yuan Z, Hu JP, Ren HY, and Zhang DB#. RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. The Plant Cell, 2011, 23(2): 681–700. https://doi.org/10.1105/tpc.110.081349

    (205)  Liu, X., Qian, Q., Xu, P., Wolf, F., Zhang, J., Zhang, DB., & Huang, Q#. A novel conditionally replicating "armed" adenovirus selectively targeting gastrointestinal tumors with aberrant wnt signaling. Hum Gene Therapy.2011, 22(4B): 427-437. https://doi.org/10.1089/hum.2010.128

    (206)  Xu J, Yang CY, Yuan Z, Zhang DS, Gondwe MY, Ding ZW, Liang WQ, Zhang DB#, and Wilson ZA. Regulatory network of ABORTED MICROSPORES (AMS) required for postmeiotic male reproductive development in Arabidopsis thaliana. The Plant Cell. 2010, 22(1): 91-107. https://doi.org/10.1105/tpc.109.071803

    (207)  Wang CM, Xu J, Zhang DS, Wilson ZA, and Zhang DB#. An effective approach for identification of in vivo protein-DNA binding sites from paired-end ChIP-Seq data. BMC Bioinformatics. 2010, 11: 81. https://doi.org/10.1186/1471-2105-11-81

    (208)  Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao YW, Liang WQ, and Zhang DB#. CYP704B2 catalyzing the ω-hydroxylation of fatty acids is required for anther cutin biosynthesis and pollen exine formation in rice. The Plant Cell, 2010, 22(1): 173-190. https://doi.org/10.1105/tpc.109.070326

    (209)  Li HF, Liang WQ, Jia RD, Yin CS, Zong J, Kong HZ, and Zhang DB#. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Res. 2010, 20(3): 299-313. doi: 10.1038/cr.2009.143.

    (210)  Hu LF, Tan HX, Liang WQ, and Zhang DB#. The Post-meiotic Deficicent Anther1 (PDA1) gene is required for post-meiotic anther development in rice. J Genet Genomics. 2010, 37(1): 1-10. https://doi.org/10.1016/S1673-8527(09)60023-0

    (211)  Zhang H, Liang WQ, Yang XJ, Luo X, Jiang N, Ma H, Zhang DB#. Carbon Starved Anther (CSA) encoding a MYB domain protein regulates sugar partitioning required for rice pollen development. The Plant Cell. 2010, 22(3): 672-689. https://doi.org/10.1105/tpc.109.073668

    (212)  Zhang X, Zong J, Liu JH, Yin JY and Zhang DB#. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar. J Integr Plant Biol. 2010, 52 (11): 1016-1026. https://doi.org/10.1111/j.1744-7909.2010.00982.x

    (213)  Zhang DS, Liang WQ, Yin C, Zong J, Gu F, and Zhang DB#. OsC6, encoding a lipid transfer protein (LTP), is required for postmeiotic anther development in rice. Plant Physiol. 2010, 154(1): 149-162. https://doi.org/10.1104/pp.110.158865

    (214)  Shen HF, Qian BJ, Yang LT, Liang WQ, Chen WW, Liu JH, and Zhang DB#. Estimation of the homoplasmy degree for transplastomic tobacco using quantitative real-time PCR, Eur Food Res Technol. 2010, 231 (1): 143-150. https://doi.org/10.1007/s00217-010-1265-z

    (215)  Liu ZH, Bao WJ, Liang WQ, Yin JY, and Zhang DB#. Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. J Integr Plant Biol. 2010, 52(7): 670-678. https://doi.org/10.1111/j.1744-7909.2010.00959.x

    (216)  Gao XC, Liang WQ, Yin CS, Ji SM, Wang HM, Su X, Guo CC, Kong HZ, Xue HW, Zhang DB#. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet. Plant Physiol. 2010, 153(2): 728-740. https://doi.org/10.1104/pp.110.156711

    (217)  Jiang LX, Yang LT, Rao J, Guo JC, Wang S, Liu J, Lee SH, and Zhang DB#. Development and in-house validation of the event-specific qualitative and quantitative PCR detection methods for genetically modified cotton MON15985. J Sci Food Agri. 2010, 90(3): 402-408. https://doi.org/10.1002/jsfa.3829

    (218)  Guan XY, Guo JC, Shen P, Yang LT, and Zhang DB#. Visual and rapid detection of two genetically modified soybean events using loop-mediated isothermal amplification method. Food Anal Method. 2010, 3(4): 313-320. https://doi.org/10.1007/s12161-010-9132-x

    (219)  Liu DE, Shen J, Yang LT, Zhang DB#. Evaluation of the impacts of different nuclear DNA content in the hull, endosperm, and embryo of rice seeds on GM rice quantification. J Agric Food Chem. 58(8) (2010), 4582-4587. https://doi.org/10.1021/jf9044233

    (220)  Wang C, Jiang LX, Rao J, Liu YN, Yang LT, Zhang DB#. Evaluation of four genes in rice for their suitability as endogenous reference standards in quantitative PCR. J Agric Food Chem.2010, 58(22): 11543-11547. https://doi.org/10.1021/jf102092c

    (221)  Li X, Shen KL, Yang LT, Wang S., Pan LW., Zhang DB#. Applicability of a novel reference molecule suitable for event-specific detections of maize NK603 based on both 5’ and 3’ flanking sequences. Food Control. 2010, 21(6): 927-934. https://doi.org/10.1016/j.foodcont.2009.12.013

    (222)  Wei JL, Xu M, Zhang DB#, and Mi HL#. The role of carotenoid isomerase in maintenance of photosynthetic oxygen evolution in rice plant. Acta Biochem Biophy Sinica. 2010, 42(7): 457-63.

    (223) Shi, XZ., Song, SQ., Sun, A., Li, D., Wu, AB., & Zhang, DB#. Determination of chloramphenicol residues in foods by ELISA and LC-MS/MS coupled with molecularly imprinted solid phase extraction. Anal Lett. 2010, 43(17): 2798-2807. https://doi.org/10.1080/00032711003763616

    (224)  Shi, X., Song, S., Qu, G., Zheng, S., Wu, A., & Zhang, DB#. Water compatible molecularly imprinted polymer microspheres for extraction of ampicillin in foods. Anal Lett. 2010, 43(5): 757-767. https://doi.org/10.1080/00032710903486286

    (225)  Liu, X., Li, J., Tian, Y., Xu, P., Chen, X., Xie, K., Zhang, DB. ,  & Huang, Q#. Enhanced pancreatic cancer gene therapy by combination of adenoviral vector expressing c-erb-B2 (Her-2=neu)-targeted immunotoxin with a replication-competent adenovirus or etoposide. Human Gene Therapy. 2010, 21(2): 157-170. https://doi.org/10.1089/hum.2009.083

    (226)  Li, S., Zong, J., Zhou, Z., David, T., & Zhang, DB#. Cloning and expression analysis of OsDUO1 encoding a rice MYB transcription factor. Plant Physiol. Commun. 2010, 46(10): 1033-1039.

    (227)  Zhang, X., Zong, J., Liu, J., Yin, J., & Zhang, DB#. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar. J. Integr Plant Biol. 2010, 52(11): 1016-1026.  https://doi.org/10.1111/j.1744-7909.2010.00982.x

    (228) Yuan Z, Gao S, Xue DW, Luo D, Li LT, Ding SY, Yao X, Wilson ZA, Qian Q, and Zhang DB#. RETARDED PALEA1 (REP1) controls palea development and floral zygomorphy in rice. Plant Physiol. 2009, 149(1): 235-244. https://doi.org/10.1104/pp.108.128231

    (229)  Zong J, Yao X, Yin JY, Zhang DB# and Ma H#. Evolution of the RNA dependent RNA polymerase (RdRP) genes, duplications and possible losses before and after the divergence of major eukaryotic groups. Gene. 2009, 447(1): 29-39. https://doi.org/10.1016/j.gene.2009.07.004

    (230) Wang S, Li X, Yang LT, Shen KL, and Zhang DB#. Development and in-house validation of a reference molecule pMIR604 for simplex and duplex event-specific identification and quantification of GM maize MIR604. Eur Food Res Technol. 2009, 230(2): 239-248. https://doi.org/10.1007/s00217-009-1168-z

    (231)  Liu J, Guo JC, Zhang HB, Li N, Yang LT, and Zhang DB#. Development and in-house validation of the event-specific polymerase chain reaction detection methods for genetically modified soybean MON89788 based on the cloned integration flanking sequence. J Agric Food Chem. 2009, 57(22): 10524-10530. https://doi.org/10.1021/jf900672d

    (232)  Li X, Yang LT, Zhang JZ, Wang S, Shen KL, Pan LW, and Zhang DB#. Simplex and duplex PCR analysis of Herculex RW (59122) maize based on one reference molecule including separated fragments of 5’ integration site and endogenous gene. J AOAC Int, 2009, 92(5):1472-1483.

    (233)  Zhang HB, Yang LT, Guo JC, Li XH, Feng YM, and Zhang DB#. Simultaneous detection of Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica and Escherichia coli O157,H7 in food samples using multiplex PCR method. J Food Safety, 2009, 29(3): 348-363.

    (234)  Guo JC, Yang LT, Liu X, Zhang HB, Qian BJ, and Zhang DB#. Applicability of the Chymopapain gene used as endogenous reference gene for transgenic Huanong No,1 papaya detection. J Agric Food Chem.2009, 57(15): 6502-6509. https://doi.org/10.1021/jf900656t

    (235)  Guo JC, Yang LT, Liu X, Guan XY, Jiang LX, and Zhang DB#. Characterization of the exogenous insert and development of event-specific PCR detection methods for genetically modified Huanong No, 1 papaya. J Agric Food Chem. 2009, 57(16): 7205-7212. https://doi.org/10.1021/jf901198x

    (236)  Jiang LX, Yang LT, Zhang HB, Guo JC, Marco M, Van den EG, and Zhang DB#. International collaborative study of the endogenous reference gene, Sucrose Phosphate Synthase (SPS), used for qualitative and quantitative analysis of genetically modified rice. J Agric Food Chem. 2009, 57(9): 3525-3532. doi:10.1021/jf803166p

    (237)  Qu GR, Zheng SL, Liu YM, Xie W, Wu AB, and Zhang DB#, Metal ion mediated synthesis of molecularly imprinted polymers targeting tetracyclines in aqueous samples J Chromatogr B, 2009, 877(27): 3187-3193. https://doi.org/10.1016/j.jchromb.2009.08.012

    (238)  Zheng SL, Song SQ, Huo L, Qu GR, Li RX, Wu AB, and Zhang DB#. A newly combined method of molecularly imprinted solid phase extraction with ELISA for rapid detection of clenbuterol in animal tissue samples. Anal Lett, 2009, 42(3):600-614. https://doi.org/10.1080/00032710802677134

    (239)  Yang LT, Jiang LX, Shen KL, Guo JC, Rao J, Lee SH, and Zhang DB#, Event-specific qualitative and quantitative PCR detection methods for genetically modified cotton MON88913. Food Safety Quality & Detection Technol. 2009, 1: 10-19.

    (240)  Wang, R., Liu, D., Li, J., Zhang, DB., & Yang, L#. Quantitative real-time fluorescence PCR technology and its application in genetically modified organisms detection. Plant Physiol. Commun. 2009, 45(6): 591-597.

    (241)  Wang, S., Li, X., Yang, L., Shen, K., & Zhang, DB#. Development and in-house validation of a reference molecule pMIR604 for simplex and duplex event-specific identification and quantification of GM maize MIR604. Eur Food Res Technol. 2009, 230(2): 239-248. https://doi.org/10.1007/s00217-009-1168-z

    (242)  Yang LT, Guo JC, Zhang HB, Liu J, and Zhang DB#. Qualitative and quantitative event-specific PCR detection methods for oxy-235 canola based on the 3' integration flanking sequence. J Agric Food Chem.2008, 56(6): 1804-1809. https://doi.org/10.1021/jf073465i

    (243)  Yang LT, Zhang HB, Guo JC, Pan LW, and Zhang DB#. International collaborative study for the endogenous reference gene, LAT52, used for qualitative and quantitative analysis of genetically modified tomato. J Agric Food Chem. 2008, 56(10): 3438-3443. https://doi.org/10.1021/jf073464q

    (244)  Dong W, Yang LT, Shen KL, Kim BH, Kleter GA, Marvin HJP, Guo R, Liang WQ, and Zhang DB#. GMDD, a database of GMO detection methods. BMC Bioinform. 2008, 9: 260. doi: 10.1186/1471-2105-9-260.

    (245)  Yang LT, Liang WQ, Jiang LX, Li WQ, Cao W, Wilson ZA, and Zhang DB#. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids. BMC Mol Biol. 2008, 9: 54. https://doi.org/10.1186/1471-2199-9-54

    (246)  Zhang DS, Liang WQ, Yuan Z, Lia N, Shi J, Wang J , Liu YM, Yu WJ, and Zhang DB#. Tapetum Degeneration Retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol. Plant. 2008, 1(4): 599-610. https://doi.org/10.1093/mp/ssn028

    (247)  Zhang HB, Yang LT, Guo JC, Jiang LX, and Zhang DB#. Development of one novel multiple-target plasmid for duplex quantitative PCR analysis of roundup ready soybean. J Agric Food Chem. 2008, 56(14): 5514-5520. https://doi.org/10.1021/jf800033k

    (248)  Wu AB, Chen HD, Tang ZZ, and Zhang DB#. Synthesis of Drosophila melanogaster acetylcholinesterase gene using yeast preferred codons and its expression in Pichia pastoris. Chem Biol Interact. 2008, 175(1-3): 403-405. https://doi.org/10.1016/j.cbi.2008.04.020

    (249)  Song SQ, Wu AB, Shi XZ, Li RX, Lin ZX, and Zhang DB#. Development and application of molecularly imprinted polymers as solid-phase sorbents for erythromycin extraction. Anal Bioanal Chem. 2008, 390(8): 2141-2150. https://doi.org/10.1007/s00216-008-1985-0

    (250) Qu GR, Wu AB, Shi XZ, Niu ZF, Xie W, and Zhang DB#. Improvement on analyte extraction by molecularly imprinted polymer microspheres toward enrofloxacin. Anal lett. 2008, 41(8): 1443-1458. https://doi.org/10.1080/00032710802119566

    (251)  Song SQ, Shi XZ, Li RX, Lin ZX, Wu AB#, and Zhang DB#. Extraction of chlorpromazine with a new molecularly imprinted polymer from pig urine. Process Biochem. 2008, 43(11):1209-1214.

    (252)  Chen HD, Zuo, XL, Tang ZZ, Wu AB, Song SP, and Zhang DB#, Fan CH#. An electrochemical sensor for pesticide assays based on carbon nanotube-enhanced acetycholinesterase activity. Analyst, 2008, 133(9): 1182-1186. https://doi.org/10.1016/j.procbio.2008.06.015

    (253)  Yang LT, Guo JC, Pan AH, Zhang HB, Zhang KW, Wang ZM, and Zhang DB#. Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule. J Agric Food Chem.2007, 55(1): 15-24. https://doi.org/10.1021/jf0615754

    (254) Shi XZ, Wu AB, Li RX, and Zhang DB#. Preparation of molecularly imprinted polymer microspheres for solid-phase extraction of chloramphenicol residue in foods. J Chromatogr B. 2007, 850(1-2): 24-30. https://doi.org/10.1016/j.jchromb.2006.10.057

    (255) Xu SC, Wu AB, Xu YQ, and Zhang DB#. Production of novel recombinant Drosophila melanogaster acetylcholinesterase for detection of organophosphate and carbamate insecticide residues. Biomol Eng. 2007, 24(2): 253-261. https://doi.org/10.1016/j.bioeng.2006.12.002

    (256) Shi XZ, Wu AB, Qu GR, Li RX, and Zhang DB#. Development and characterisation of molecularly imprinted polymers based on methacrylic acid for selective recognition of drugs. Biomaterials. 2007, 28(25): 3741-3749. https://doi.org/10.1016/j.biomaterials.2007.04.036

    (257) Qian BJ, Shen HF, Liang WQ, Guo XM, Zhang CM, Wang Y, Li GD, Wu AB, Cao KM, and Zhang DB#. Immunogenicity of recombinant hepatitis B virus surface antigen fused with preS1 epitopes expressed in rice seeds. Transgenic Res. 2007, 17(4): 621-631. https://doi.org/10.1016/j.biomaterials.2007.04.036

    (258)  Li X, Jiang DH, Yong KL, and Zhang DB#. Varied transcriptional efficiencies of multiple Arabidopsis U6 small nuclear RNA genes. J Integr Plant Biol.2007, 49(2): 222-229. https://doi.org/10.1111/j.1744-7909.2007.00393.x

    (259) Xu, S., Wu, A., Chen, H., Xie, Y., Xu, Y., Zhang, L. & Zhang, DB#. Production of a novel recombinant Drosophila melanogaster acetylcholinesterase for detection of organophosphate and carbamate insecticide residues. Biomol Eng. 2007, 24(2): 253-261. https://doi.org/10.1016/j.bioeng.2006

    (260) Yao, X., Ma, H., Wang, J., & Zhang, DB#.  Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa. J Integr Plant Biol. 2007, 49(6): 885-897. https://doi.org/10.1111/j.1744-7909.2007.00509.x

    (261) Zhao, M., Liang, W., Zhang, DB., Wang, N., Wang, C., & Pan, Y#. Cloning and characterization of squalene synthase (SQS) gene from Ganoderma lucidum. J Microbiol Biotechnol.  2007, 17(7): 1106-1112. (Q1, top10%)

    (262) Wu, Y., Wu, G., Xiao, L., Zhang, DB. & Lu, C#. Event-specific qualitative and quantitative PCR detection methods for transgenic rapeseed hybrids MS1×RF1 and MS1×RF2. J Agric Food Chem. 2007, 55(21): 8380-8389. https://doi.org/10.1021/jf0717337

    (263)Yuan, Z., Yao, X., Zhang, DB., Sun, Y., & Huang, H#. Genome-wide expression profiling in seedlings of the Arabidopsis mutant uro that is defective in the secondary cell wall formation. J Integr Plant Biol. 2007, 49(12): 1754-1762. https://doi.org/10.1111/j.1744-7909.2007.00586.x

    (264) Wang, H., Chu, H., Liu, H., Li, X., Yang, G., Zhang, DB. & Yong, K#. Phenotypic characterization of a rice mutant Oryza sativa extraordinary glume 1 (Oseg 1) and its genetic analysis. J. Shanghai Uni. 2007, 11(6): 619-624.

    (265) Yang LT, Pan AH, Zhang HB, Guo JC, Yin CS, and Zhang DB#. Event-specific qualitative and quantitative polymerase chain reaction analysis for genetically modified canola T45. J Agric Food Chem. 2006, 54(26): 9735-9740. https://doi.org/10.1021/jf061918y

    (266) Liang WQ, Huang YH, Yang XH, Zhou ZA, Pan AH, Qian BJ, Huang C, Chen JX, and Zhang DB#. Oral immunization of mice with plant derived fimbrial adhesin FaeG induces systemic and mucosal K88ad enterotoxigenic Escherichia coli specific immune responses. FEMS Immunol Med Microbiol.2006, 46(3): 393-399. https://doi.org/10.1111/j.1574-695X.2005.00048.x

    (267) Pan AH, Yang LT, Xu SC, Yin CS, Zhang KW, Wang ZY, and Zhang DB#. Event-specific qualitative and quantitative PCR detection of MON863 maize based upon the 3’-transgene integration sequence. J Cereal Sci. 2006, 43(2): 250-257. https://doi.org/10.1016/j.jcs.2005.10.003

    (268) Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, and Zhang DB#. The rice Tapetum Degeneration Retardation gene is required for tapetum degradation and anther development. The Plant Cell. 2006, 18(11): 2999-3014. https://doi.org/10.1105/tpc.106.044107

    (269) Chu HW, Qian Q, Liang WQ, Yin CS, Tan HX, Yao X, Yuan Z, Yang J, Huang H, Luo D, Ma H, and Zhang DB#. The FLORAL ORGAN NUMBER4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiol. 2006, 142(3):1039-1052. https://doi.org/10.1104/pp.106.08673

    (270) Li XX, Duan XP, Jiang HX, Sun YJ, Tang YP, Yuan Z, Guo JK, Liang WQ, Chen L, Wang J, Ma H, Yin JY, and Zhang DB#. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol. 2006, 141(4):1167-1184. https://doi.org/10.1104/pp.110.153593

    (271) Jiang DH, Yin CS, Yu AP, Zhou XF, Liang WQ, Yuan Z, Xu Y, Yu QB, Wen TQ, and Zhang DB#. Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice. Cell Res. 2006, 16(5): 507-518. https://doi.org/10.1038/sj.cr.7310062

    (272) Qian BJ, Shen HF, Xiong JJ, Chen L, Zhang L, Jia JW, Wang Y, Zhang ZC, Yuan Z, Cao KM, and Zhang DB#. Expression and purification of the synthetic preS1 gene of Hepatitis B Virus with preferred Escherichia coli codon preference. Protein Expr Purif. 2006, 48(1): 74-80. https://doi.org/10.1016/j.pep.2005.11.024

    (273) Pan, AH., Yang, LT., Xu, SC., Yin, CS., Zhang, KW., Wang, Z., & Zhang, DD#. Event-specific qualitative and quantitative PCR detection of MON863 maize based upon the 3′-transgene integration sequence. J. Cereal Sci. 2006, 43(2): 250-257. https://doi.org/10.1016/j.jcs.2005.10.003

    (274) Liang, W., Huang, Y., Yang, X., Zhou, Z., Pan, A., Qian, B. & Zhang, DB#. Oral immunization of mice with plant-derived fimbrial adhesin FaeG induces systemic and mucosal K88ad enterotoxigenic Escherichia coli-specific immune responses. FEMS Immun. Med. Microbiol. 2006, 46(3): 393-399. https://doi.org/10.1111/j.1574-695X.2005.00048.x

    (275) Wang, Y., Wang, Y., & Zhang, DB#. Identification of the rice (Oryza sativa L.) mutant msp1-4 and expression analysis of its UDT1 and GAMYB genes. J Plant Physiol. Mol. Biol. 2006, 32(5): 527-534.

    (276) Yang LT, Pan AH, Zhang KW, Yin CS, Qian BJ, Chen JX, Huang C, and Zhang DB#. Qualitative and quantitative PCR methods for event-specific detection of genetically modified cotton Mon1445 and Mon531. Transgenic Res.2005, 14(6): 817-831. https://doi.org/10.1007/s11248-005-0010-z

    (277) Huang YH, Liang WQ, Wang YJ, Zhou ZA, Pan AH, Yang XH, Huang C, Chen JX, and Zhang DB#. Immunogenicity of the epitope of the foot and mouth disease virus fused with a hepatitis B core protein as expressed in transgenic tobacco. Viral Immunol. 2005, 18(4): 668-677. https://doi.org/10.1089/vim.2005.18.668

    (278) Yang LT, Pan AH, Zhang KW, Guo JC, Yin CS, Chen JX, Huang C, and Zhang DB#. Identification and quantification of three genetically modified insect resistant cotton lines using conventional and TaqMan real-time polymerase chain reaction methods. J Agric Food Chem. 2005, 53(16): 6222-6229. https://doi.org/10.1021/jf050095u

    (279) Yang LT, Chen JX, Huang C, Jia SR, Liu YH, Pan LW, and Zhang DB#. Validation of a cotton specific gene, Sad1, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic cottons. Plant Cell Rep. 2005, 24(4): 237-245. https://doi.org/10.1007/s00299-005-0929-9

    (280) Yang LT, Shen HF, Pan AH, Chen JX, Cheng H, and Zhang DB#. Screening and construct specific detection methods of transgenic Huafan No,1 tomato by conventional and real-time PCR. J Sci Food Agr. 2005, 85(13): 2159-2166. https://doi.org/10.1002/jsfa.2193

    (281) Yang LT, Xu SC, Pan AH, Yin CS, Zhang KW, Wang ZY, Zhou ZG, and Zhang DB#. Event-specific qualitative and quantitative PCR detection of genetically modified MON863 maize based on the 5’-transgene integration sequence. J Agric Food Chem. 2005, 53(24): 9312-9318. https://doi.org/10.1021/jf051782o

    (282) Weng HB, Yang LT, Liu ZL, Ding JY, Pan AH, and Zhang DB#. A novel reference gene, High-mobility-group protein I/Y, can be used in qualitative and real-time quantitative PCR detection of transgenic rapeseeds. J AOAC Int. 2005, 88(2): 577-584.

    (283) Yang LT, Ding JY, Zhang CM, Jia JW, Weng HB, Liu WX, and Zhang DB#. Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep. 2005, 23(10-11): 759-763. https://doi.org/10.1007/s00299-004-0881-0

    (284) Yang LT, Pan AH, Jia JW, Ding JY, Chen JX, Huang C, Zhang CM, and Zhang DB#. Validation of a tomato specific gene, LAT52, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic tomatoes. J Agric Food Chem. 2005, 53(2):183-190. https://doi.org/10.1021/jf0493730

    (285) Liu HS, Chu HW, Hui Li, Wang HM, Wei JL, Li N, Ding SY, Huang H, Ma H, Huang CF, Luo D, Yuan Z, Liu JH, and Zhang DB#. Genetic analysis and mapping of rice (Oryza sativa L,) male-sterile (OsMS-L) mutant. Chinese Science Bulletin. 2005, 50(2): 122-125.

    (286) Li H, Xu L, Wang H, Yuan Z, Cao XF, Yang ZN, Zhang DB, Xu Y, and Huang H#. The Putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and MicroRNA165/166 in Arabidopsis leaf development. The Plant Cell, 2005, 17(8): 2157-2171. https://doi.org/10.1105/tpc.105.033449

    (287) Chu, H., Liu, H., Li, H., Wang, H., Wei, J., Li, N., & Zhang, DB#. Genetic analysis and mapping of the rice leafy-hull mutant Oslh. J Plant Physiol. Mol. Biol. 2005, 31(6): 594-598.

    (288) Chen, L., Ouyang, F., Qian, B., Ren, H., Wang, Q., Jiang, Q., & Zhang, DB# Cloning of CTB-PROIN fusion gene and its expression in Escherichia coli. Chinese J Biotech. 2005, 21(2): 204-210.

    (289) Feinberg, M., Fernandez, S., Cassard, S., Charles-Delobel, H., Bertheau, Y., Balois, A., & Zhang, DB#. Quantitation of 35S promoter in maize DNA extracts from genetically modified organisms using real-time polymerase chain reaction, part 2: Interlaboratory study. J. AOAC Inter. 2005, 88(2): 558-573.

    (290) Yang, L., Shen, H., Pan, A., Chen, J., Huang, C., & Zhang, DB#. Screening and construct-specific detection methods of transgenic Huafan No 1 tomato by conventional and real-time PCR. J. Sci Food Agric. 2005, 85(13): 2159-2166. https://doi.org/10.1002/jsfa.2193

    (291) Huang, Y., Liang, W., Wang, Y., Zhou, Z., Pan, A., Yang, X., & Zhang, DB#. Immunogenicity of the epitope of the foot-and-mouth disease virus fused with a hepatitis B core protein as expressed in transgenic tobacco. Viral Immun. 2005, 18(4): 668-677. https://doi.org/10.1089/vim.2005.18.668

    (292) Ding JY, Jia JW, Yang LT, Wen HB, Zhang CM, Liu WX, and Zhang DB#.Validation of a rice specific gene, Sucrose Phosphate Synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes. J Agric Food Chem. 2004, 52(11): 3372-3377. https://doi.org/10.1021/jf049915d

    (293) Cheng H, Lu JH, Liang WQ, Huang YH, Zhang WJ, and Zhang DB#. Purification of the recombiant heptatis B virus core antigen (rHBcAg) produced in the yeast Saccaromyces cerevisiae and comparative observation of its particles by transmission eletron microscopy (TEM) and atomic microscopy (AFM). Mircon. 2004, 35(5): 311-318. https://doi.org/10.1016/j.micron.2003.12.003

    (294) Weng HB, Pan AH, Yang LT, Zhang CM, Liu ZL, and Zhang DB#. Estimating transgene copy number by real-time PCR assay using HMG I/Y as an endogenous reference gene in transgenic rapeseed. Plant Mol. Biol. Rep. 2004, 22(3): 289-300. https://doi.org/10.1007/BF02773139

    (295) Zhang HB, Zhang DB, Chen J, Yang YH, Huang ZJ, Huang DF, Wang XC, and Huang RF. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol. Biol. 2004, 55(6): 825-834. https://doi.org/10.1007/s11103-004-2140-8

    (296) Cai, Y., Ding, Y., Zhang, DB, Dai, J., Shi, G., & Xu, W#. Simulated moving bed technology and its applications. Chinese J Chromat. 2004, 22(2): 111-115.

    (297) Zhao, M., Zhong, J., Liang, W., Wang, N., Chen, M., Zhang, DB., & Jong, S#. Analysis of squalene synthase expression during the development of Ganoderma lucidum. J Microbiol Biotechnol. 2004, 14(1): 116-120.

    (298) Huang YH, Liang WQ, Pan AH, Zhou ZA,Cheng H, Chen JX, and Zhang DB#. Production of FaeG, the major subunit of K88 fimbriae, in transgenic tobacco plants and its immunogenicity in mice. Infect Immun. 2003, 71(9): 5436-5439. https://doi.org/10.1128/IAI.71.9.5436-5439.2003.

    (299) Zhang YL, Zhang DB#, Li WQ, Chen JQ, Peng YF, and Cao W. A novel real-time quantitative PCR method using attached universal template probe. Nucleic Acids Res. 2003, 31(20): e123. https://doi.org/10.1093/nar/gng123.

    (300) Ma, L., Zhang, DB., Chen, L., & Chen, M#. Molecular cloning and characterization of Stevia rebaudiana UDP-glucosyltransferase.. Shi Yan Sheng Wu Xue Bao. 2003, 36(2): 123-129.

    (301) Cai, Y., Ding, Y., Zhang, DB., Shi, G., & Xu, W#. Optimization of conditions of simulated moving bed chromatography for separating mother liquid of xylitol with real coded genetic algorithms. Chinese J. Chromat. 2003, 21(3): 206-209.

    (302) Gao, H., Zhang, DB., Pan, A., Liang, W., & Liang, C#. Multiplex Polymerase Chain Reaction Method for Detection of Bovine Materials in Foodstuffs. J AOAC Int. 2003, 86(4): 764-767.

    (303) Meng YL, Wang YM, Zhang DB, and NII NS#. Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expressions under stress conditions. Cell Res. 2001, 11(3): 187-193. https://doi.org/10.1038/sj.cr.7290085.

    (304) He, P., Zhang, DB., Liang, W., Yao, Q., & Zhang, R#. Expression of choline oxidase gene (cod A) enhances salt tolerance of the tobacco. Acta Biochimica et Biophysica Sinica. 2001, 33(5):523-524.

    (305)Zhang, DB., Jiang, Y., Wu, X., & Hong, M#. Expression of human lactoferrin cDNA in insect cells. Acta Biochimica et Biophysica Sinica. 1998, 30(6): 578.

The information in this directory is provided to support the academic, administrative and business activities of the University of Adelaide. To facilitate these activities, entries in the University Phone Directory are not limited to University employees. The use of information provided here for any other purpose, including the sending of unsolicited commercial material via email or any other electronic format, is strictly prohibited. The University reserves the right to recover all costs incurred in the event of breach of this policy.

Entry last updated: Monday, 6 Jun 2022