PURE MTH 3002 - Topology and Analysis III

North Terrace Campus - Semester 1 - 2019

Solving equations is a crucial aspect of working in mathematics, physics, engineering, and many other fields. These equations might be straightforward algebraic statements, or complicated systems of differential equations, but there are some fundamental questions common to all of these settings: does a solution exist? If so, is it unique? And if we know of the existence of some specific solution, how do we determine it explicitly or as accurately as possible? This course develops the foundations required to rigorously establish the existence of solutions to various equations, thereby laying the basis for the study of such solutions. Through an understanding of the foundations of analysis, we obtain insight critical in numerous areas of application, such areas ranging across physics, engineering, economics and finance. Topics covered are: sets, functions, metric spaces and normed linear spaces, compactness, connectedness, and completeness. Banach fixed point theorem and applications, uniform continuity and convergence. General topological spaces, generating topologies, topological invariants, quotient spaces. Introduction to Hilbert spaces and bounded operators on Hilbert spaces.

  • General Course Information
    Course Details
    Course Code PURE MTH 3002
    Course Topology and Analysis III
    Coordinating Unit School of Mathematical Sciences
    Term Semester 1
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 3 hours per week
    Available for Study Abroad and Exchange Y
    Prerequisites MATHS 2100
    Course Description Solving equations is a crucial aspect of working in mathematics, physics, engineering, and many other fields. These equations might be straightforward algebraic statements, or complicated systems of differential equations, but there are some fundamental questions common to all of these settings: does a solution exist? If so, is it unique? And if we know of the existence of some specific solution, how do we determine it explicitly or as accurately as possible? This course develops the foundations required to rigorously establish the existence of solutions to various equations, thereby laying the basis for the study of such solutions. Through an understanding of the foundations of analysis, we obtain insight critical in numerous areas of application, such areas ranging across physics, engineering, economics and finance.

    Topics covered are: sets, functions, metric spaces and normed linear spaces, compactness, connectedness, and completeness. Banach fixed point theorem and applications, uniform continuity and convergence. General topological spaces, generating topologies, topological invariants, quotient spaces. Introduction to Hilbert spaces and bounded operators on Hilbert spaces.
    Course Staff

    No information currently available.

    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes
    1. Demonstrate an understanding of the concepts of metric spaces and topological spaces, and their role in mathematics.
    2. Demonstrate familiarity with a range of examples of these structures.
    3. Prove basic results about completeness, compactness, connectedness and convergence within these structures.
    4. Use the Banach fixed point theorem to demonstrate the existence and uniqueness of solutions to differential equations.
    5. Demonstrate an understanding of the concepts of Hilbert spaces and Banach spaces, and their role in mathematics.
    6. Demonstrate familiarity with a range of examples of these structures.
    7. Prove basic results about Hilbert spaces and Banach spaces and operators between such spaces.
    8. Apply the theory in the course to solve a variety of problems at an appropriate level of difficulty.
    9. Demonstrate skills in communicating mathematics orally and in writing.
    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)
    Deep discipline knowledge
    • informed and infused by cutting edge research, scaffolded throughout their program of studies
    • acquired from personal interaction with research active educators, from year 1
    • accredited or validated against national or international standards (for relevant programs)
    1,2,3,4,5,6,7
    Critical thinking and problem solving
    • steeped in research methods and rigor
    • based on empirical evidence and the scientific approach to knowledge development
    • demonstrated through appropriate and relevant assessment
    8
    Teamwork and communication skills
    • developed from, with, and via the SGDE
    • honed through assessment and practice throughout the program of studies
    • encouraged and valued in all aspects of learning
    9
    Career and leadership readiness
    • technology savvy
    • professional and, where relevant, fully accredited
    • forward thinking and well informed
    • tested and validated by work based experiences
    8,9
    Self-awareness and emotional intelligence
    • a capacity for self-reflection and a willingness to engage in self-appraisal
    • open to objective and constructive feedback from supervisors and peers
    • able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
    8
  • Learning Resources
    Required Resources
    None.
    Recommended Resources
    You are not expected to buy any textbook. If you wish to read a textbook along with your lecture notes, you can have a look at some of the following books.
    • Cohen, Graham, "A course in modern analysis and its applications"
    • Simmons, George F., "Introduction to topology and modern analysis''
    • Apostol, Tom M., "Mathematical analysis''
    • Kreyszig, Erwin,  "Introductory functional analysis with applications''
    • Sutherland, Wilson A., "Introduction to metric and topological spaces''
    • Munkres, James, "Topology"
    • Larusson, Finnur, "Lectures on real analysis" (the last two chapters)
    Online Learning
    Assignments, tutorial exercises, handouts, and course announcements will be posted on MyUni.
  • Learning & Teaching Activities
    Learning & Teaching Modes
    The lecturer will guide the students through the course material in 30 lectures. Students are expected to actively engage with the material during the lectures.  Interaction and discussion of any difficulties that arise during the lectures is encouraged. Students are expected to attend all lectures, but (when possible) the lectures will be recorded to help cover absences and for revision purposes. Students will be expected to participate in active tutorials every second week.  In the tutorials, students will solve problems together in small groups.  Short online quizzes will be given following the tutorials to help develop understanding.  Fortnightly assignments help develop understanding of the theory and its applications, and timely feedback allows students to gauge their progress.  A group project with a written report further develops research skills, teamwork skills, and communication skills.
    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.


    Activity Quantity Workload hours
    Lectures 30 75
    Tutorials and quizzes 5 15
    Assignments 5 40
    Group project 1 26
    Total 156
    Learning Activities Summary
    Lecture Schedule
    Weeks 1-6 Metric spaces Metric spaces, examples, convergent sequences, open and closed sets, Cauchy sequences, complete metric spaces, continuous maps, the Banach fixed point theorem, motivation and examples, Picard's existence and uniqueness theorem for solutions of differential equations, compactness, uniform continuity, the Heine-Borel theorem, the Arzela-Ascoli theorem.
    Week 7-8 Topology Topological spaces, examples, Hausdorff spaces, compact spaces, continuous maps, homeomorphisms, connected and path connected spaces.
    Week 9-12 Hilbert and Banach spaces Normed vector spaces, Banach spaces, examples, bounded linear maps, bounded linear functionals, dual spaces, inner products, Cauchy-Schwarz inequality, parallellogram law, orthogonality, Hilbert spaces, examples, orthogonal projections, Riesz representation theorem, adjoint operators, structure theorem for separable Hilbert spaces.
    There will be tutorials on Wednesdays of Weeks 2, 4, 6, 10, 12 (no tutorial in Week 8).
    Small Group Discovery Experience
    A group project with a written report develops research skills, teamwork skills, and communication skills.
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment taskTask typeDueWeightingLearning outcomes
    Examination Summative Examination period 70% All
    Homework assignments Formative and summative Weeks 3, 5, 7, 9, 11 15% All
    Quizzes on tutorials Formative and summative Weeks 2, 4, 6, 10, 12 (no tutorial in Week 8) 5% All
    Group project report Formative and summative Set in Week 5. Complete draft due for feedback from lecturer no later than Week 10. Final submission in Week 12. 10% All
    Assessment Related Requirements
    An aggregate score of 50% is required to pass the course.
    Assessment Detail
    Assessment taskSetDueWeighting
    Quiz on Tutorial exercises 1 Week 2 Week 2 1%
    Assignment 1 Week 2 Week 3 3%
    Quiz on Tutorial exercises 2 Week 4 Week 4 1%
    Assignment 2 Week 4 Week 5 3%
    Quiz on Tutorial exercises 3 Week 6 Week 6 1%
    Assignment 3 Week 6 Week 7 3%
    Assignment 4 Week 8 Week 9 3%
    Quiz on Tutorial exercises 4 Week 10 Week 10 1%
    Assignment 5 Week 10 Week 11 3%
    Quiz on Tutorial exercises 5 Week 12 Week 12 1%
    Group project report Week 5 Week 12 10%
    A complete draft of the group project report is due to be handed in to the lecturer for feedback no later than Week 10.
    Submission
    Homework assignments must be submitted on time with a signed assessment cover sheet.  Late assignments will not be accepted.  The same holds for the group project report.  

    Assignments will be returned within two weeks.  Students may apply to be excused from an assignment for medical or compassionate reasons.  Documentation is required and the lecturer must be notified as soon as possible.
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.