PURE MTH 3007 - Groups and Rings III

North Terrace Campus - Semester 1 - 2019

The algebraic notions of groups and rings are of great interest in their own right, but knowledge and understanding of them is of benefit well beyond the realms of pure algebra. Areas of application include, for example, advanced number theory; cryptography; coding theory; differential, finite and algebraic geometry; algebraic topology; representation theory and harmonic analysis including Fourier series. The theory also has many practical applications including, for example, to the structure of molecules, crystallography and elementary particle physics. Topics covered are: (1) Groups, subgroups, cosets and normal subgroups, homomorphisms and factor groups, products of groups, finitely generated abelian groups, groups acting on sets and the Sylow theorems. (2) Rings, integral domains and fields, polynomials, ideals, factorization in integral domains and unique factorization domains.

  • General Course Information
    Course Details
    Course Code PURE MTH 3007
    Course Groups and Rings III
    Coordinating Unit School of Mathematical Sciences
    Term Semester 1
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 3 hours per week
    Available for Study Abroad and Exchange Y
    Prerequisites MATHS 1012
    Assumed Knowledge PURE MTH 2106
    Course Description The algebraic notions of groups and rings are of great interest in their own right, but knowledge and understanding of them is of benefit well beyond the realms of pure algebra. Areas of application include, for example, advanced number theory; cryptography; coding theory; differential, finite and algebraic geometry; algebraic topology; representation theory and harmonic analysis including Fourier series. The theory also has many practical applications including, for example, to the structure of molecules, crystallography and elementary particle physics.

    Topics covered are: (1) Groups, subgroups, cosets and normal subgroups, homomorphisms and factor groups, products of groups, finitely generated abelian groups, groups acting on sets and the Sylow theorems. (2) Rings, integral domains and fields, polynomials, ideals, factorization in integral domains and unique factorization domains.
    Course Staff

    No information currently available.

    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes
    1. Demonstrate understanding of the idea of a group, a ring and an integral domain, and be aware of examples of these structures in mathematics.
    2. Appreciate and be able to prove the basic results of group theory and ring theory.
    3. Understand and be able to apply the fundamental theorem of finite abelian groups.
    4. Understand Sylow's theorems and be able to apply them to prove elementary results about finite groups.
    5. Appreciate the significance of unique factorization in rings and integral domains.
    6. Apply the theory in the course to solve a variety of problems at an appropriate level of difficulty.
    7. Demonstrate skills in communicating mathematics orally and in writing.
    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)
    Deep discipline knowledge
    • informed and infused by cutting edge research, scaffolded throughout their program of studies
    • acquired from personal interaction with research active educators, from year 1
    • accredited or validated against national or international standards (for relevant programs)
    1,2,3,4,5,6
    Critical thinking and problem solving
    • steeped in research methods and rigor
    • based on empirical evidence and the scientific approach to knowledge development
    • demonstrated through appropriate and relevant assessment
    all
    Teamwork and communication skills
    • developed from, with, and via the SGDE
    • honed through assessment and practice throughout the program of studies
    • encouraged and valued in all aspects of learning
    7
    Career and leadership readiness
    • technology savvy
    • professional and, where relevant, fully accredited
    • forward thinking and well informed
    • tested and validated by work based experiences
    7
    Self-awareness and emotional intelligence
    • a capacity for self-reflection and a willingness to engage in self-appraisal
    • open to objective and constructive feedback from supervisors and peers
    • able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
    7
  • Learning Resources
    Required Resources
    None.
    Recommended Resources
    J. B. Fraleigh, “A first course in abstract algebra", covers most of the material in the course in a similar manner to that presented in lectures. There are many other introductory texts on abstract algebra in the library which students may find useful as references.
    Online Learning
    Assignments, tutorial exercises, handouts, and course announcements will be posted on MyUni.
  • Learning & Teaching Activities
    Learning & Teaching Modes
    A complete set of notes for the course will be made available to students at the start of semester.
    Each week the lecturer will indicate which material will covered, students will be expected to read over this material in advance and the lecture time will be used to guide the class through the material, working through proofs and examples. In particular students will have opportunity to raise any points of difficulty arising from their own reading of the notes. These classes are intended to have a high level of interaction, whilst they will be recorded, students will not gain the full benefit if not able to attend in person.
    The material is challenging and students are not expected to be able to learn it based solely on their own study.
    The third class each week will be a tutorial focusing on problem solving, involving a combination of students working in groups, and the lecturer presenting solutions. There will be some slight variation to the schedule accomodate public holidays and the mid-semester tests.
    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.


    Activity Quantity Workload Hours
    Lectures/Tutorials 33 102
    Assignments 3 18
    Tests 2 10
    Group Project 1 26
    Total 156
    Learning Activities Summary
    Lecture Schedule
    Week 1 Groups Groups and subgroups.
    Week 2 Groups Permutation groups, isomorphisms, cosets and normal subgroups, conjugation.
    Week 3 Groups Simple groups, homomorphisms and factor groups.
    Week 4 Groups The first isomorphism theorem, the Jordan-Hölder theorem.
    Week 5 Groups Products of groups
    Week 6 Groups Finitely Generated Abelian groups.
    Week 7 Groups Groups acting on sets.
    Week 8 Groups The Sylow theorems and applications.
    Week 9 Rings Introduction to rings.
    Week 10 Rings Integral domains, polynomial rings.
    Week 11 Rings Factorisation in integral domains, ideals, eudlidean domains.
    Week 12 Rings Principal Ideal Domains, Unique Factorisation Domains.
    Week 13 Rings Completion of proofs of theorems.
    In weeks 2,4,6,8,10 and 12 there will be a tutorial on Tuesdays.
    In weeks 5 and 9 there will be a class test in the Tuesday class.
    Small Group Discovery Experience
    A group project with a written report develops research skills, teamwork skills, and communication skills.
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment taskTask typeDueWeightingLearning outcomes
    Examination Summative Examination period 70% All
    Homework assignments Formative and summative Weeks 3,7,13 10% All
    Tests Summative Weeks 5,9 10% All
    Group Project Formative and summative Week 11 10% All
    Assessment Related Requirements
    An aggregate score of 50% is required to pass the course.
    Assessment Detail
    Assessment taskSetDueWeighting
    Assignment 1 Week 1 Week 3 3.33%
    Assignment 2 Week 5 Week 7 3.33%
    Assignment 3 Week 11 Week 13 3.33%
    Group Project Week 3 Week 11 10%


    Submission

    Homework assignments will be accepted by e-submission only. Assignments will be accepted within 24 hours of the due date but the mark will be penalised by a factor of 60%.
    Assignments will be returned within two weeks.

    Students may be elegible for an extension or exemption from an assignment for medical or compassionate reasons. Documentation is required and the lecturer must be notified as soon as possible.

    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.