PURE MTH 7023 - Pure Mathematics Topic D

North Terrace Campus - Semester 2 - 2021

Please contact the School of Mathematical Sciences for further details.

  • General Course Information
    Course Details
    Course Code PURE MTH 7023
    Course Pure Mathematics Topic D
    Coordinating Unit Mathematical Sciences
    Term Semester 2
    Level Postgraduate Coursework
    Location/s North Terrace Campus
    Units 3
    Available for Study Abroad and Exchange Y
    Assessment Ongoing assessment, exam
    Course Staff

    Course Coordinator: Associate Professor Sanjeeva Balasuriya

    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes
    In 2016, the topic of this course is Differential and Algebraic Topology.


    This course is part of the geometry/topology sequence. However, its methods also underlie part of the basic theory of partial differential equations, which appears, roughly speaking, as an infinite-dimensional extension of these ideas.

    * To define the degree of a smooth map and give standard topological applications
    * To show existence of embeddings of compact smooth manifolds into Euclidean space
    * To define and study transversality results
    * To study regular and singular values of smooth maps and Sard's theorem
    * brief introduction to Morse theory
    * brief introduction to surgery theory
    * brief introduction to K-theory
    Other topics not covered in Topic A eg some Riemannian geometry, Inverse and implicit function theorems etc
    Advanced topics if time permits:
    * brief introduction to the Dirac operator and index theory
    (here is where Topic B is required)

    Assumed knowledge:
    Topic A (Murray's course in semester 1)
    Topic B (Rosenberg's course in semester 1)
    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)
    Deep discipline knowledge
    • informed and infused by cutting edge research, scaffolded throughout their program of studies
    • acquired from personal interaction with research active educators, from year 1
    • accredited or validated against national or international standards (for relevant programs)
    Critical thinking and problem solving
    • steeped in research methods and rigor
    • based on empirical evidence and the scientific approach to knowledge development
    • demonstrated through appropriate and relevant assessment
  • Learning Resources
    Required Resources
    Video recordings, short writeups, research publications and other ancillary material will all be provided via the course's MyUni site.
    Recommended Resources
    Online Learning
    This course will have an active MyUni website.
  • Learning & Teaching Activities
    Learning & Teaching Modes
    The learning in this course will be governed by modern pedagogical techniques, with no traditional lectures.  A combination of the concepts of flipped classrooms, active learning, discovery-based learning, peer evaluations, and assessments for learning will be employed. 

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    Activity Quantity Workload Hours
    Workshops (includes presentations, and prior work) 24 90
    Problem sets 4 36
    Final project 1 30
    Total 156
    Learning Activities Summary
    The course material will be associated with the following sections, each of which will be of roughly two weeks duration:

    1. Theoretical preliminaries: existence, uniqueness, continuity in initial conditions
    2.  Phase space: invariant sets, Lasalle invariance, Hamiltonian systems, Lyapunov functions, alpha and omega limits sets
    3.  Critical points and local behaviour: stability, Hartman-Grobman theorem, stable and unstable manifolds, centre manifolds
    4.  Poincare maps: critical points for maps, Poincare maps, Poincare-Bendixson theorem, van der Pol oscillator
    5.  Local bifurcations: saddle-node, transcritical, pitchfork, Hopf, period-doubling, establishment via the implicit function theorem
    6.  Chaos: Smale horseshoe map, symbolic dynamics, Smale-Birkhoff theorem, Melnikov methods

    The delivery of these sections will be via the two workshop sessions per week, run in student-centred mode, coupledwith prior readings/viewings.
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment Task Type Weighting Learning Outcomes
    Problem sets (4) Formative and Summative 44% All
    Presentations (instructor-reviewed) Formative and Summative 16% All
    Presentations (peer-reviewed)    Formative and Summative 6% All
    Active participation (instructor+peer-reviewed) Formative and Summative 10% All
    Final project Summative 24% All
    Assessment Detail

    No information currently available.


    No information currently available.

    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.