## MATHS 1012 - Mathematics IB

### North Terrace Campus - Semester 2 - 2019

This course, together with MATHS 1011 Mathematics IA, provides an introduction to the basic concepts and techniques of calculus and linear algebra, emphasising their inter-relationships and applications to engineering, the sciences and financial areas, introduces students to the use of computers in mathematics, and develops problem solving skills with both theoretical and practical problems. Topics covered are: Calculus: Differential equations, sequences and series, power series, calculus in two variables. Algebra: Subspaces, rank theorem, linear transformations, orthogonality, eigenvalues and eigenvectors, singular value decomposition, applications of linear algebra.

• General Course Information
##### Course Details
Course Code MATHS 1012 Mathematics IB School of Mathematical Sciences Semester 2 Undergraduate North Terrace Campus 3 Up to 5 hours per week Y MATHS 1011 ECON 1005, ECON 1010, MATHS 1009, MATHS 1010 This course, together with MATHS 1011 Mathematics IA, provides an introduction to the basic concepts and techniques of calculus and linear algebra, emphasising their inter-relationships and applications to engineering, the sciences and financial areas, introduces students to the use of computers in mathematics, and develops problem solving skills with both theoretical and practical problems. Topics covered are: Calculus: Differential equations, sequences and series, power series, calculus in two variables. Algebra: Subspaces, rank theorem, linear transformations, orthogonality, eigenvalues and eigenvectors, singular value decomposition, applications of linear algebra.

##### Course Timetable

The full timetable of all activities for this course can be accessed from Course Planner.

• Learning Outcomes
##### Course Learning Outcomes
On successful completion of this course students will be able to:
1. Demonstrate understanding of concepts in linear algebra, relating to vector spaces, linear transformations, orthogonality, eigenvalues and eigenvectors and diagonalisation.
2. Demonstrate understanding of concepts in calculus, relating to differential equations, sequences, series and convergence and multivariable calculus.
3. Employ methods related to these concepts in a variety of applications.
4. Apply logical thinking to problem-solving in context.
5. Demonstrate an understanding of the role of proof in mathematics.
6. Use appropriate technology to aid problem-solving.
7. Demonstrate skills in writing mathematics.

This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

University Graduate Attribute Course Learning Outcome(s)
Deep discipline knowledge
• informed and infused by cutting edge research, scaffolded throughout their program of studies
• acquired from personal interaction with research active educators, from year 1
• accredited or validated against national or international standards (for relevant programs)
all
Critical thinking and problem solving
• steeped in research methods and rigor
• based on empirical evidence and the scientific approach to knowledge development
• demonstrated through appropriate and relevant assessment
3,4,5,6
• Learning Resources
##### Required Resources
A set of Course Notes should be purchased from the Online Shop and picked up from the Image and Copy centre, Level 1 in the Hughes Building. Alternatively these will be available as a PDF on the MyUni site for this course. (More specific details will be provided on MyUni.)

##### Recommended Resources
1. Poole, D., Linear Algebra: a Modern Introduction 4th edition (Cengage Learning)
2. Stewart, J., Calculus 8th edition (metric version) (Cengage Learning)
While it is not compulsory to buy the texts, they are recommended, especially for students who want extra support in this course. Copies of these text books may be purchased from the Co-op bookshop on campus or from the publisher and electronic versions are also available for purchase from the publisher. Copies of both books are available in the Barr Smith Library for short term borrowing and reference.

##### Online Learning

This course uses MyUni extensively and exclusively for providing electronic resources, such as lecture notes, assignment and tutorial questions, and worked solutions. Students should make appropriate use of these resources. MyUni can be accessed here: https://myuni.adelaide.edu.au/

This course also makes use of online assessment software for mathematics called Maple TA, which we use to provide students with instantaneous formative feedback. Further details about using Maple TA will be provided on MyUni.

Students are also reminded that they need to check their University email on a daily basis. Sometimes important and time-critical information might be sent by email and students are expected to have read it. Any problems with accessing or managing student email accounts should be directed to Technology Services.

• Learning & Teaching Activities
##### Learning & Teaching Modes
This course relies on lectures to guide students through the material, tutorial classes to provide students with small group and individual assistance and a sequence of written and online assignments to provide formative assessment opportunities for students to practice techniques and develop their understanding of the course.

For additional support we also run a drop-in service called First Year Maths Help on the ground floor of Ingkarni Wardli. This is staffed with tutors Monday to Friday 10am-4pm. Just drop in whenever!

The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

 Activity Quantity Workload hours Lectures 48 84 Tutorials 11 11 Assignments 11 55 Mid Semester Test 1 6 Total 156
##### Learning Activities Summary
In Mathematics IB the two topics of algebra and calculus detailed below are taught in parallel, with two lectures a week on each. The tutorials are a combination of algebra and calculus topics, pertaining to the previous week's lectures.

Lecture Outline

Algebra

• Revision: Bases, transpose and dimension (2 lectures)

• Row space, null space, column space, rank theorem (3 lectures)
• Linear Transformations (5 lectures)
• Definition and basic properties.
• Kernel and range.
• Standard matrix.
• Dimension theorem.
• Orthogonality, Gram-Schmidt (4 lectures)
• Inner product and orthogonality.
• Gram-Schmidt process.
• Orthogonal projection.
• Ortogonal transformations and matrices.
• Eigenvalues, eigenvectors and diagonalisation (6 lectures)
• Eigenvalues and eigenvectors.
• Properties of eigenvalues.
• Diagonalisation.
• Symmetric matrices.
• Orthogonal diagonalisation.
• Singular value decomposition and applications (3 lectures)
Calculus

• Differential Equations (5 lectures)
• First order separable equations.
• Phase lines.
• First order linear equations.
• Euler and Runge-Kutta methods.
• Second order constant coefficient homogenous equations.
• Second order constant coefficient non-homogenous equations.
• Sequences, Series and Convergence (10 lectures)
• Sequences and applications.
• Series and applications.
• Power series, Taylor series.
• Multivariable Calculus (7 lectures)
• Surfaces in three dimensions.
• Functions of several variables including polar coordinates.
• Limits and continuity in two variables.
• Partial derivatives.
• Directional derivatives and the gradient.
• Extrema of functions of two variables.
• Assessment

The University's policy on Assessment for Coursework Programs is based on the following four principles:

1. Assessment must encourage and reinforce learning.
2. Assessment must enable robust and fair judgements about student performance.
3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
4. Assessment must maintain academic standards.

##### Assessment Summary
 Assessment Task Task Type Weighting Learning Outcomes Written Assignments Formative 7.5% all MapleTA Assignments Formative 7.5% all Tutorial Participation Formative 5% all Mid Semester Test Summative and Formative 10% 1,2,3,4 Exam Summative 70% 1,2,3,4,5,7
##### Assessment Related Requirements
An aggregate score of 50% is required to pass the course. Furthermore students must achieve at least 45% on the final examination to pass the course.
##### Assessment Detail

Assignments (written and online) are due every fortnight, the first are released in Week 1 and due in Week 3.

Tutorials are weekly beginning in Week 2.

The Mid Semester Test occurs in your enrolled computer lab in Week 7.

Precise details of all of these will be provided on the MyUni site for this course.

##### Submission
1. All written assignments are to be e-submitted following the instructions on MyUni.
2. Late assignments will not be accepted without a medical certificate.
3. Written assignments will have a one week turn-around time for feedback to students.
4. Online Maple TA assignments provide instantaneous feedback to students.
See MyUni for more comprehensive details regarding assignment submission, our late policy etc.

Grades for your performance in this course will be awarded in accordance with the following scheme:

M10 (Coursework Mark Scheme)
FNS   Fail No Submission
F 1-49 Fail
P 50-64 Pass
C 65-74 Credit
D 75-84 Distinction
HD 85-100 High Distinction
CN   Continuing
NFE   No Formal Examination
RP   Result Pending

Further details of the grades/results can be obtained from Examinations.

Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

Final results for this course will be made available through Access Adelaide.

Replacement and Additional Assessment Examinations (R/AA Exams)

Students are encouraged to read the University's R/AA exam information on the University’s Examinations webpage here:

• Student Feedback

The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

• Student Support
• Policies & Guidelines
• Fraud Awareness

Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's studentâ€™s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.

```
```