MATHS 1012 - Mathematics IB

North Terrace Campus - Summer - 2018

This course, together with MATHS 1011 Mathematics IA, provides an introduction to the basic concepts and techniques of calculus and linear algebra, emphasising their inter-relationships and applications to engineering, the sciences and financial areas, introduces students to the use of computers in mathematics, and develops problem solving skills with both theoretical and practical problems. Topics covered are: Calculus: Differential equations, sequences and series, power series, calculus in two variables. Algebra: Subspaces, rank theorem, linear transformations, orthogonality, eigenvalues and eigenvectors, singular value decomposition, applications of linear algebra.

  • General Course Information
    Course Details
    Course Code MATHS 1012
    Course Mathematics IB
    Coordinating Unit School of Mathematical Sciences
    Term Summer
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 5 hours per week
    Available for Study Abroad and Exchange Y
    Prerequisites MATHS 1011
    Incompatible ECON 1005, ECON 1010, MATHS 1009, MATHS 1010
    Course Description This course, together with MATHS 1011 Mathematics IA, provides an introduction to the basic concepts and techniques of calculus and linear algebra, emphasising their inter-relationships and applications to engineering, the sciences and financial areas, introduces students to the use of computers in mathematics, and develops problem solving skills with both theoretical and practical problems.

    Topics covered are: Calculus: Differential equations, sequences and series, power series, calculus in two variables. Algebra: Subspaces, rank theorem, linear transformations, orthogonality, eigenvalues and eigenvectors, singular value decomposition, applications of linear algebra.
    Course Staff

    Course Coordinator: Dr Adrian Koerber

    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

    Classes begin on Tuesday the 3rd of January and conclude on Friday the 10th of February.

    The Mid Semester Test will take place in the Labs on Monday 30th of January.

    The final Exam will take place in the week Monday 13th - 17th of February. Check the University's Examinations timetable closer to that week for precise details.
  • Learning Outcomes
    Course Learning Outcomes
    On successful completion of this course students will be able to:
    1. Demonstrate understanding of concepts in linear algebra, relating to vector spaces, linear transformations, orthogonality, eigenvalues and eigenvectors and diagonalisation.
    2. Demonstrate understanding of concepts in calculus, relating to differential equations, sequences, series and convergence and multivariable calculus.
    3. Employ methods related to these concepts in a variety of applications.
    4. Apply logical thinking to problem-solving in context.
    5. Demonstrate an understanding of the role of proof in mathematics.
    6. Use appropriate technology to aid problem-solving.
    7. Demonstrate skills in writing mathematics.
    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)
    Deep discipline knowledge
    • informed and infused by cutting edge research, scaffolded throughout their program of studies
    • acquired from personal interaction with research active educators, from year 1
    • accredited or validated against national or international standards (for relevant programs)
    all
    Critical thinking and problem solving
    • steeped in research methods and rigor
    • based on empirical evidence and the scientific approach to knowledge development
    • demonstrated through appropriate and relevant assessment
    3,4,5,6
  • Learning Resources
    Required Resources
    A set of Course Notes should be purchased from the Online Shop and picked up from the Image and Copy centre, Level 1 in the Hughes Building. Alternatively these will be available as a PDF on the MyUni site for this course. (More specific details will be provided on MyUni.)

    Recommended Resources
    1. Poole, D., Linear Algebra: a Modern Introduction 4th edition (Cengage Learning)
    2. Stewart, J., Calculus 8th edition (metric version) (Cengage Learning)
    While it is not compulsory to buy the texts, they are recommended, especially for students who want extra support in this course. Copies of these text books may be purchased from the Co-op bookshop on campus or from the publisher and electronic versions are also available for purchase from the publisher. Copies of both books are available in the Barr Smith Library for short term borrowing and reference.

    Online Learning

    This course uses MyUni extensively and exclusively for providing electronic resources, such as lecture notes, assignment and tutorial questions, and worked solutions. Students should make appropriate use of these resources. MyUni can be accessed here: https://myuni.adelaide.edu.au/

    This course also makes use of online assessment software for mathematics called Maple TA, which we use to provide students with instantaneous formative feedback. Further details about using Maple TA will be provided on MyUni.

    Students are also reminded that they need to check their University email on a daily basis. Sometimes important and time-critical information might be sent by email and students are expected to have read it. Any problems with accessing or managing student email accounts should be directed to Technology Services.

  • Learning & Teaching Activities
    Learning & Teaching Modes
    This course relies on lectures to guide students through the material, tutorial classes to provide students with small group and individual assistance and a sequence of written and online assignments to provide formative assessment opportunities for students to practise techniques and develop their understanding of the material.

    For additional support we also run a drop-in service called First Year Maths Help on the ground floor of Ingkarni Wardli. In Summer this will be staffed with tutors at the following times:
    Mondays 11-12,
    Tuesdays 2-3,
    Thursdays 11-12,
    Fridays 2-3.
    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.


    Activity Quantity   Workload hours
    Lectures 48 84
    Tutorials 11 11
    Assignments 11 55
    Mid Semester Test 1 6
    Total 156
    Learning Activities Summary

    Mathematics IB Summer is taught double-time compared to Semester 1 or 2. The two topics of algebra and calculus detailed below are taught in parallel, with four lectures a week on each. There are two tutorials per week and two assignments per week, one each on algebra and calculus.

    Lecture Outline

    Algebra

    • Revision: Bases, transpose and dimension (2 lectures)

    • Row space, null space, column space, rank theorem (3 lectures)
    • Linear Transformations (5 lectures)
      • Definition and basic properties.
      • Kernel and range.
      • Standard matrix.
      • Dimension theorem.
    • Orthogonality, Gram-Schmidt (4 lectures)
      • Inner product and orthogonality.
      • Gram-Schmidt process.
      • Orthogonal projection.
      • Ortogonal transformations and matrices.
    • Eigenvalues, eigenvectors and diagonalisation (6 lectures)
      • Application: Google PageRank.
      • Eigenvalues and eigenvectors.
      • Properties of eigenvalues.
      • Diagonalisation.
      • Symmetric matrices.
      • Orthogonal diagonalisation.
    • Singular value decomposition and applications (3 lectures)

    Calculus

    • Differential Equations (5 lectures)
      • First order separable equations.
      • Phase lines.
      • First order linear equations.
      • Euler and Runge-Kutta methods.
      • Second order constant coefficient homogenous equations.
      • Second order constant coefficient non-homogenous equations.
    • Sequences, Series and Convergence (10 lectures)
      • Sequences and applications.
      • Series and applications.
      • Power series, Taylor series.
      • Radius of convergence.
    • Multivariable Calculus (7 lectures)
      • Surfaces in three dimensions.
      • Functions of several variables including polar coordinates.
      • Limits and continuity in two variables.
      • Partial derivatives.
      • Directional derivatives and the gradient.
      • Extrema of functions of two variables.

    Tutorial Outline

    Tutorial 1: Algebra: Subspaces, linear independence. Row, column and null space. Calculus: First order DEs. Second order DEs.

    Tutorial 2: Algebra: Rank theorem. Distance, angle and orthogonality. Orthogonality. Gram-Schmidt process, projections, linear transformations. Calculus: Logistic equation. Limits, Squeeze Theorem.

    Tutorial 3: Algebra: Linear transformations: kernel, range, standard matrix. Composition of linear transformations, conic sections. Calculus: Limits, improper integrals. L'Hopital's rule. Discontinuities.

    Tutorial 4: Algebra: Eigenvalues, eigenvectors, diagonalisation. Standard form for conics and quadrics. Calculus: Newton's Method. Intermediate Value Theorem. Max-min problems. Mean Value Theorem.

    Tutorial 5: Functions of 2 variables, limits and continuity. Limits, continuity, partial derivatives of functions of 2 variables. Mean Value Theorems, graph sketching. Taylor and Maclaurin polynomials.

    Tutorial 6: Tangent planes to surfaces. Chain rule. Directional derivatives. Maximum rate of change. Classification of critical points. Series, convergence. Taylor and Maclaurin series.

    Note: precise tutorial content may vary due to the vagaries of public holidays.

  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment Task Task Type Weighting Learning Outcomes
    Assignments Formative 15% all
    Tutorial participation Formative 5% all
    Mid Semester Test Summative and Formative 10% 1,2,4,5
    Examination Summative 70% 1,2,3,4,5,6,8
    Assessment Related Requirements
    An aggregate score of 50% is required to pass the course. Furthermore students must achieve at least 45% on the final examination to pass the course.
    Assessment Detail
    Assessment itemDistributedDue dateWeighting
    Assignments 1 week 1 week 2 2.5%
    Assignments 2 week 2 week 3 2.5%
    Assignments 3 week 3 week 4 2.5%
    Assignments 4 week 4 week 5 2.5%
    Assignments 5 week 5 week 6 2.5%
    Assignments 6 week 6 week 7 2.5%
    Mid Semester Test week 5 10%

    Assignments 1-6 are made up of a written component, worth a total of 7.5%, and an online (Maple TA) component, worth 7.5%.

    Calculus hand-in assignments will be due Mondays at 2:00pm in EM105.
    Calculus Maple TA assignments will be due Mondays at 5:00pm.
    Algebra hand-in assignments will be due Thursdays at 2:00pm in EM105.
    Algebra Maple TA assignments will be due Thursdays at 5:00pm.

    All assessment materials will be available via MyUni.

    Submission
    1. All written assignments are to be submitted at the designated time and place with a signed cover sheet attached.
    2. Late assignments will not be accepted without a medical certificate.
    3. Written assignments will have a one week turn-around time for feedback to students.
    4. Online Maple TA assignments provide instantaneous feedback to students.
    See MyUni for more comprehensive details regarding assignment submission, our late policy etc.
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

    Replacement and Additional Assessment Examinations (R/AA Exams)

    Students are encouraged to read the University's R/AA exam information on the University’s Examinations webpage here:

    http://www.adelaide.edu.au/student/exams/modified/replacement/


    In this course Additional (Academic) exams will be granted to those students who have obtained a final mark
    of 40–49%.
  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.