MICRO 3102 - Infection & Immunity IIIA (Biomedical Science)

North Terrace Campus - Semester 1 - 2024

This advanced course examines the molecular basis of interactions of microbial pathogens with their environment and various hosts, especially those which infect humans. Bacterial pathogens of global and medical significance that will be highlighted in detail include: Streptococcus pneumonia, Salmonella sp., Shigella sp., Staphylococcus sp., Mycobacterium; and Neisseria sp. Particular emphasis is given to the use of molecular biological approaches for study of bacterial infectious disease pathogenesis, and biotechnological applications, including vaccine development will also be highlighted. Topics to be explored include: bacterial pathogens - global significance of infectious disease; principal approaches for investigating host-pathogen interactions; the role of innate immunity and defence mechanisms; the microbiota; virulence factors which promote colonisation and damage to the host; cell surface polysaccharides and proteins; role of antigenic and phase variation in virulence and disease; gene regulation, especially in relation to expression of virulence factors; stress responses; invasion and intracellular survival and multiplication; resistance and avoidance of innate host defences; bacterial toxins; antibiotic resistance; vaccines and therapeutic interventions; genomic approaches to analysis of virulence; parasites including malaria and viruses. The lecture program is complemented by tutorials, which extend skills in exploring and critically assessing the scientific literature, and practicals which develop advanced experimental skills for the study of bacterial pathogenic mechanisms.

  • General Course Information
    Course Details
    Course Code MICRO 3102
    Course Infection & Immunity IIIA (Biomedical Science)
    Coordinating Unit Molec & Biomedical Science
    Term Semester 1
    Level Undergraduate
    Location/s North Terrace Campus
    Units 6
    Contact Up to 19 hours per fortnight
    Available for Study Abroad and Exchange N
    Prerequisites MICRO 2500 or MICRO 2504; or equivalent
    Incompatible MICRO 3000, MICRO 3007
    Restrictions Available to BSc (Biomedical Science) students only
    Assessment Exam on lecture material, practical component activities, performance in symposia/seminars
    Course Staff

    Course Coordinator: Professor Michael Beard




    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes
    1 To gain an understanding of the molecular mechanisms that underpin the pathogenesis and control of bacterial, virus, and parasite  infections, and the interaction of microbial pathogens with the immune system.
    2 To gain a body of experimental skills and techniques frequently used in molecular microbiology research which are fundamental to
    understanding how research in these disciplines is conducted.
    3 To develop essential skills in experimental design, techniques and execution which are highly relevant to solving problem in
    microbial pathogenesis and many other areas of scientific research.
    4 To develop organisational and time management skills and the capacity for multi-tasking.
    5 To foster the ability to work in small teams and to communicate and coordinate outcomes with a larger group of colleagues.
    6 To become exposed to experimental processes that develop over many weeks, building up a framework of experience with techniques and concepts that could not readily be obtained in the course of a semester within a single research laboratory.
    7 To be adequately educated and mentored through close contact with academic staff.
    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)

    Attribute 1: Deep discipline knowledge and intellectual breadth

    Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.

    1, 2, 3, 6, 7

    Attribute 2: Creative and critical thinking, and problem solving

    Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.

    1,2,3,6

    Attribute 3: Teamwork and communication skills

    Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.

    1,2,3,4,5,6,7

    Attribute 4: Professionalism and leadership readiness

    Graduates engage in professional behaviour and have the potential to be entrepreneurial and take leadership roles in their chosen occupations or careers and communities.

    1,2,3,4,5,6

    Attribute 5: Intercultural and ethical competency

    Graduates are responsible and effective global citizens whose personal values and practices are consistent with their roles as responsible members of society.

    2,3,4,5,6,7

    Attribute 8: Self-awareness and emotional intelligence

    Graduates are self-aware and reflective; they are flexible and resilient and have the capacity to accept and give constructive feedback; they act with integrity and take responsibility for their actions.

    4
  • Learning Resources
    Required Resources
    Textbook

    The recommended text book is:

    "Bacterial Pathogenesis. A Molecular Approach" Third edition. Wilson, B.A., Salyers, A.A., Whitt, D.D., and Winkler, M.E. ASM
    Press.


    Additional resourses

    Please refer to MyUni for additional reading and video material

    Practical laboratory

    An essential component of the physical fabric is a large modern and well-equipped teaching laboratory, designed and maintained for advanced practical experiments.  This laboratory can be at most only be marginally removed from research standard and
    should be in close proximity to Biological Sciences. This close juxtaposition of research and undergraduate education is entirely in keeping with the aspirations of a research-intensive university where active research informs and stimulates in the classroom.
     

    A combined course and practical manual will be supplied during orientation/week 1.


    Recommended Resources
    Recommemded reading will be posted on MyUni.
    Online Learning
    Teaching materials and course documentation will be posted on the MyUni website (http://myuni.adelaide.edu.au/).
  • Learning & Teaching Activities
    Learning & Teaching Modes
    This course will be delivered in the following means:
    Internal
    3 x 1 hour lectures per week, 1 x 2 hour tutorial per fortnight (total of 5 sessions) 3 x 5 hours practical per fortnight
    Practical sessions of 5 hours on Wednesday and Thursday afternoons in odd weeks and 5 hours in even weeks. Practicals include: wet lab sessions and dry lab bioinformatics sessions.
    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    A student enrolled in a 6 unit course, such as this, should expect to spend, on average 24 hours per week on the studies required. This includes both the formal contact time required to the course (e.g., lectures and practicals), as well as non-contact time (e.g., reading and revision).
    Learning Activities Summary
    Week Type of learning activity Topic
    1 Lecture Bacteria-host interactions and innate defences
    Practical Molecular analysis of bacterial virulence factors
    Tutorial
    2 Lecture Bacteria-host interactions and innate defences
    Gut pathogens
    Intracellular bacterial pathogens
    Practical Molecular analysis of bacterial virulence factors
    Tutorial Critical thinking and analysis of primary research papers related to lecture material
    3 Lecture Intracellular bacterial pathogens
    Bacteria and subversion of host cell biology
    Practical Molecular analysis of bacterial virulence factors
    Tutorial
    4 Lecture Cell surface polysacchardies
    Gene regulation and the host environment
    Practical Molecular analysis of bacterial virulence factors
    Tutorial Critical thinking and analysis of primary research papers related to lecture material
    5 Lecture Antibiotics
    Practical Molecular analysis of bacterial virulence factors
    Tutorial
    6 Lecture Vaccines
    Practical Introduction to Bioinformatics
    Tutorial Critical thinking and analysis of primary research papers related to lecture material
    Mid-Semester Break
    7 Lecture Microbiota
    Tutorial
    Practical Molecular analysis of bacterial virulence factors
    In silico analysis of gene sequences and sequence manipulation
    8 Lecture Stress responses
    Tutorial Critical thinking and analysis of primary research papers related to lecture material, , including problem solving questions
    Practical Molecular analysis of bacterial virulence factors In silico analysis of gene sequences and sequence manipulation
    9 Lecture Mucosal, skin, and respiratory tract pathogens
    Tutorial
    Practical Molecular analysis of bacterial virulence factors In silico analysis of gene sequences and sequence manipulation
    10 Lecture Respiratory tract pathogens
    Gene expression in vivo
    Tutorial Critical thinking and analysis of primary research papers related to lecture materia, including problem solving questions
    Practical Molecular analysis of bacterial virulence factors In silico analysis of gene sequences and sequence manipulation
    11 Lecture Respiratory tract pathogens
    Membrane proteins
    Tutorial
    Practical Molecular analysis of bacterial virulence factors In silico analysis of gene sequences and sequence manipulation
    12 Lecture Parasites: Viruses and Malaria
    Tutorial
    Practical Molecular analysis of bacterial virulence factors In silico analysis of gene sequences and sequence manipulation
    13*
    *Optional teaching week
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary



    Assessment
    task
    Type of
    assessment
    Percentage of total
    assessmen for
    grading
    purposes
    Hurdle
    (Yes/No)
    Objective
    being assessed
    Practical
    reports
    Summative 40% No BO-1,-2,-3,-4,-5,
    -6,-7; SO-1,-2,-3,-5
    Symposium Summative 10% No BO-1, -8
    Exam Summative 50% No BO-1,-6, SO-6

     

    Assessment Detail
    Exams (50% of course grade).
    One exam will be given to test the capacity to comprehend and integrate knowledge from a broad range of topics relevant to the disciplines of bacterial microbiology.
    1/3rd of the marks will be on questions of a “problem solving nature” which be posted on MyUni 7-10 days before the exam. This provides students time and resources to research the problem and prepare a solution.
    2/3rd of the marks will be by short answer or similar questions.

    Symposium/Seminar (10% of course grade)
    Assessment will be cohesion, content, performance, and participation, and is determined via the use of a scoring rubrick.

    Practicals (40% of course)
    Assessment will be by a combination of activities that include one or more of the following:
    1) Practical theory question assignment, A series of questions are used to promote reading of the practical manual and the theory behind the methods and reagents used. Online via MyUni. Feed back given before completion of other reports.
    2) Daybook. This is used to record all experimental work and results. It is used to write the experimental reports.
    3) Wet lab practical experimental reports. Write-up of a simple experiments: assessment of recording, analysis, interpretation and written presentation of experimental data. This first assessment provides feedback on essential skills required for good laboratory practice and for later assessments.
    4) Bioinformatics dry exercises and experiments
    Divided into 2 to 3 sections with evenly spread, separate submission dates. Assesses ability to handle software, nature of the DNA sequences, identify and analyse sequence motifs, relationship to protein sequence, in silico cloning exercise. Feedback given for each report. Due half of semester that does not have wet prac..
    Submission
    Submission Guidelines
    It is your responsibility to ensure that your work is submitted on time. All assessments (except daybook) are to be submitted electronically (the study questions are located on MyUni). In the case of the Experimental Summaries and Bioinformatics assessments, you will use the provided templates and submit your completed work via the relevant submission links MyUni. Note that The Experimental summaries will be submitted via a “Turnitin submission link” to check for plagiarism (see page XXVIII) and if evidence of plagiarism is detected, you may be penalised up to and including a zero mark for the assessment in question.


    Late submission of assessments
    If an extension is not applied for, or not granted then a penalty for late submission will apply. A penalty of 10% of the value of the assignment for each calendar day that is late (i.e. weekends count as 2 days), up to a maximum of 50% of the available marks will be applied. This means that an assignment that is 5 days or more late without an approved extension can only receive a maximum of 50% of the mark.
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.