COMP SCI 3014 - Computer Graphics

North Terrace Campus - Semester 1 - 2018

Selected topics from: Light and the human visual system. Colour. Images, quantisation and sampling. Image manipulations. Raster graphics. Coordinate systems and transformations. The viewing frustum. The graphics pipeline and toolkits. Clipping and culling. Visibility. Lighting and shadows. Transparency and blending. Texture mapping. Local shading models. Environment mapping techniques. Multi-pass rendering. Shaders. Animation and particles. Level of detail. Scene graphs and implementation efficiency.

  • General Course Information
    Course Details
    Course Code COMP SCI 3014
    Course Computer Graphics
    Coordinating Unit Computer Science
    Term Semester 1
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 2.5 hours per week
    Available for Study Abroad and Exchange Y
    Prerequisites One of COMP SCI 1007, COMP SCI 1009, COMP SCI 1103, COMP SCI 1203, COMP SCI 2103 or COMP SCI 2202
    Assumed Knowledge MATHS 1012 & COMP SCI 2005
    Assessment written exam, assignments
    Course Staff

    Course Coordinator: Dr Anthony Dick

    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes
    On successful completion of this course students will be able to:

    1 Understand the structure of modern computer graphics systems
    2 Understand the basic principles of implementing copmputer graphics primitives
    3 Familiarity with key algorithms for modelling and rendering graphical data
    4 Develop design and problem solving skills with application to computer graphics
    5 Gain experience in constructing interactive computer graphics programs using OpenGL

    The above course learning outcomes are aligned with the Engineers Australia Stage 1 Competency Standard for the Professional Engineer.
    The course is designed to develop the following Elements of Competency: 1.1   1.2   1.3   1.4   1.5   1.6   2.1   2.2   2.3   2.4   3.1   3.2   3.3   3.4   3.5   3.6   

    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)
    Deep discipline knowledge
    • informed and infused by cutting edge research, scaffolded throughout their program of studies
    • acquired from personal interaction with research active educators, from year 1
    • accredited or validated against national or international standards (for relevant programs)
    Critical thinking and problem solving
    • steeped in research methods and rigor
    • based on empirical evidence and the scientific approach to knowledge development
    • demonstrated through appropriate and relevant assessment
    Teamwork and communication skills
    • developed from, with, and via the SGDE
    • honed through assessment and practice throughout the program of studies
    • encouraged and valued in all aspects of learning
    Career and leadership readiness
    • technology savvy
    • professional and, where relevant, fully accredited
    • forward thinking and well informed
    • tested and validated by work based experiences
    Intercultural and ethical competency
    • adept at operating in other cultures
    • comfortable with different nationalities and social contexts
    • able to determine and contribute to desirable social outcomes
    • demonstrated by study abroad or with an understanding of indigenous knowledges
    Self-awareness and emotional intelligence
    • a capacity for self-reflection and a willingness to engage in self-appraisal
    • open to objective and constructive feedback from supervisors and peers
    • able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
  • Learning Resources
    Required Resources
    None. See below for recommended reference books. Lecture notes, background material, practicals and tutorial sheets will be available from the course website.
    Recommended Resources
    The following books are useful references:

    * OpenGL Programming Guide (Red Book). OpenGL Architecture Review Board

    * OpenGL Reference Manual (Blue Book). OpenGL Architecture Review Board

    * Interactive Computer Graphics: A top-down approach using OpenGL, 6th ed. Edward Angel

    * Real Time Rendering, 2nd ed. Tomas Akenine-Moller and Eric Haines

    * Computer Graphics using OpenGL, 2nd ed. Francis Hill

    The most up to date programming references and tutorials can be found online. Links to useful online resources are posted on the course website.

    It's useful to have your own machine/laptop with Opengl installed (Mesa on Linux is an opengl compatible implementation and this should be available on most lab machines). Some related libraries (GLFW, for example, are also needed - see the first lecture).
    Online Learning
    Links to useful background material on the web are posted on the course website.

    The computer science forums can be used for asking questions or discussing the course. Announcements and news will also be posted on the forums: 

    To use the forums, you need to sign up for the course by following this link
  • Learning & Teaching Activities
    Learning & Teaching Modes
    Some important concepts are introduced during lectures (2hrs per week). These concepts are reinforced by smaller tutorial sessions, held every two weeks. Tutorials are also designed to give students some hands on experience with quite small and self contained practical exercises. Practical assignments are fewer but more significant, and are intended to develop and test the students’ understanding and practical ability to use the concepts covered.

    YOU MUST ensure you have done prepoaration work before each scheduled lecture and tutorial, to participate in the lecture/tutorial. The first week is the exception but for all other weeks, it will be assumed you have read the required material and, if relevant (particularly for tutorials) attempted the tutorial tasks. Tutorials, in particular, are for helping you with those parts of the assigned tasks/reading that you find diffiicult to understand/complete. However, even lectures will, at times, assume you hacve read the required material and if no-one asks questions about that material, it will assumed to have been understood.

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    Students are expected to spend an average of 10 hours per week on activities related to Computer Graphics. Of these, 2 are spent in lectures and 0.5 in tutorials. The remainder of the time is to be spent on practical assignments, tutorial preparation and background reading and revision. This includes compiling, running and testing the example code provided in lectures.
    Learning Activities Summary
    A full schedule is maintained on the course website.
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Written exam: 50%

    Summative, assesses learning objectives 1, 2, 3, 4

    Practicals: 50%

    Formative, assesses learning objectives 1, 2, 3, 4, 5.
    Assessment Related Requirements
    Students must obtain at least 40% in the exam, and an overall passing grade, to pass the course.
    Assessment Detail
    Written exam: this will be a 2 hour closed book exam. Questions will test the students’ understanding of concepts presented throughout the course, and their ability to put them to use to solve problems.

    Practicals: there will be several practical assignments of increasing scope. Practicals will be written in C/C++ and use the OpenGL API, and relate to concepts and API features previously introduced in lectures and tutorials.

    Assessment Type Weighting Week due Learning Outcomes CBOK Mapping *
     Abstraction  Design Hardware &
    Data &
    Programming HCI Systems
    Assignment 1 Formative 5% 3 1,2,3,4,5 3 3 3 3 5 3 5
    Assignment 2 Formative 15% 7 1,2,3,4,5 3 3 3 3 5 5 5
    Assignment 3 Formative 15% 10 1,2,3,4,5 3 3 3 3 5 5 5
    Assignment 4 Summative 15% 13 1,2,3,4,5 3 3 3 3 5 5 5
    Exam Summative 50% 2,3,4 3 3 3 3 3

    *CBOK categories are explained in section 4 of the ICT core body of knowlege. Numbers assigned correspond to the Bloom taxonomy (see page 26 of the same document).

    Practical work is to be stored in the students’ SVN repository and submitted using the School of Computer Science web based automark system. More details will be provided in lectures and in each practical sheet.
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy ( course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.