COMP SCI 4077 - Solving Engineering Models

North Terrace Campus - Semester 1 - 2016

The course information on this page is being finalised for 2016. Please check again before classes commence.

This course concerns techniques for the modelling and simulation of complex systems using a variety of methods and software tools. Students are introduced to the package Matlab and are taken through a study of the techniques used in sophisticated modelling packages to solve common engineering problems. The Matlab programming language is used extensively and students learn to program their own solutions for these common engineering problems. In addition to studying the equations for these models and their solutions, students study the stability, accuracy and reliability of the solution methods.

  • General Course Information
    Course Details
    Course Code COMP SCI 4077
    Course Solving Engineering Models
    Coordinating Unit Computer Science
    Term Semester 1
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 3 hours per week
    Available for Study Abroad and Exchange Y
    Assessment Exams and/or assignments
    Course Staff

    Course Coordinator: Professor David Suter

    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes
    1. To demonstrate an understanding of the methods used to solve certain simulation problems that are common in engineering.
    2. To demonstrate a proficiency in the programming language Matlab such as is necessary to solve certain simulation problems that are common in engineering.
    3. To demonstrate an ability to write efficient and robust programs which solve certain simulation problems that are common in engineering and to demonstrate an ability to recognize aberrant behaviours of the numerical methods used to solve them.
    University Graduate Attributes

    No information currently available.

  • Learning Resources
    Required Resources
    A comprehensive set of lecture notes will be given to each student at the start of the course. Students will be required to program extensively with the Matlab programming package. Matlab is available in many of the computing laboratories used by students. Tutorial and assignment questions will be posted on the course website
    Students will need to submit their work via the Moodle website
    Recommended Resources
    The course web page is at
    There is no set text for this course but the following references may be useful. Some of these references will be discussed in lectures.
    [1] K.E. Atkinson. An introduction to numerical analysis. Wiley, 1978.
    [2] R.L. Burden and J.D. Faires. Numerical Analysis. PWS-Kent, Boston, 1993. 5th Edition.
    [3] S.C. Chapra and R.P. Canale. Numerical methods for Engineers. McGraw-Hill, New York, 1989. 4th edition.
    [4] W. Cheney and D. Kincaid. Numerical mathematics and computing. Brookes/Cole, 2nd edition, 1985.
    [5] S.D. Conte and C. de Boor. Elementary numerical analysis. McGraw-Hill, 3rd edition, 1980.
    [6] G. Dahlquist and A. Bjork. Numerical methods. Prentice-Hall, 1974.
    [7] L. Fausett. Numerical Methods: Algorithms and Applications. Prentice-Hall, New Jersey, 2003.
    [8] G.E. Forsythe, M. Malcolm, and C.B. Moler. Computer methods for mathematical computations.Prentice-Hall, 1977.
    [9] G.E. Forsythe and C.B. Moler. Computer solution of linear algebraic systems. Prentice-Hall, 1967.
    [10] C. Gerald and P. Wheatley. Applied numerical analysis. Addison-Wesley, 4th edition, 1989.
    [11] W. Hager. Applied numerical linear algebra. Prentice-Hall, 1988.
    [12] E. Isaacson and H.B. Keller. Analysis of numerical methods. Wiley, 1966.
    [13] R.L. Johnston. Numerical methods: A software approach. Wiley, 1982.
    [14] D. Kincaid and W. Cheney. Numerical Mathematics. Brookes/Cole, New York, 1996. 2nd Edition.
    [15] G. Linfield and J. Penny. Numerical methods using Matlab. Ellis-Horwood, 1995.
    [16] J.H. Matthews. Numerical methods. Prentice-Hall, 1987.
    [17] A. Ralston and P. Rabinowitz. A first course in numerical analysis. McGraw-Hill, 2nd edition,1978.
    [18] G. Strang. Linear algebra and its applications. HBJ, 3rd edition, 1988.
    [19] A. Gilat. MATLAB An Introduction with Applications. . 2nd Ed, John Wiley & Sons, 2005.
    Online Learning
    Tutorial and assignment questions will be posted on the course website
    Tutorial problem questions will be posted about one week before the tutorial session where the problems will be discussed. Students will be expected to attempt the problems and to engage in their discussion during the tutorial session. An announcement will be made in lectures before each assignment is posted. Students will need to submit their assignment work via the Moodle forum website
    Students can use the Moodle forum to exchange ideas with other students in the course and ask questions about the course.
  • Learning & Teaching Activities
    Learning & Teaching Modes
    The course will be taught by lectures supported by problem-solving tutorials developing material covered in the lectures. There will be a strong emphasis on programming in Matlab.

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    Students should expect to spend about 12 hours/week on reviewing lecture material, solving tutorial and assignment problems. Tutorials will start in the second week of the semester.
    Learning Activities Summary
    A brief introduction to Matlab
    Examples of simple applications that lead to linear systems of equations Numrical solution of ODEs in 1D
    Initial value problems
    Examples of engineering systems that lead to ODEs
    Review of the numerical solution of first order ODEs
    Adaptive step-size control
    Numerical solution of systems of simultaneous first order ODEs
    Numerical solution of second and higher order ODEs
    Boundary value problems
    An explicit finite difference method for the 1D wave equation
    Finite difference solution of the potential equation
    Systems of linear equations
    Review of solution of linear systems of equations
    Methods for special matrices arising from engineering problems
    Iterative methods for large sparse systems
    The ADI method for the 2D heat equation
    Specific Course Requirements
    Students who have Matlab software installed on their own computers can do all their programming on those machines. Other students will be able to use any of the computing laboratories openly provided to students in the ECMS Faculty. Students who have their own Matlab software can do all their programming on their own computers. Other students will be able to use any of the computing laboratories openly provided to students in the ECMS Faculty.
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Attendance at all tutorials is compulsory. There will be a written exam for this course. It will count for 70% of the final assessment (learning outcomes 1-3). There will be two assignments, each of which will count for 15% of the final assessment for the course (learning outcomes 1-3). The first assignment will be handed out before the mid-semester break. There are no joint or collaborative assessment tasks for this course.
    Assessment Related Requirements
    Students are required to achieve a minimum standard in all the components of a course in order to receive a passing grade. If the mark for any individual component is less than 40% of the available marks for that component, the student’s overall mark will be capped at 44F. To pass, the student must obtain a passing mark overall and achieve at least 40% of the available marks in all of the course components.
    Assessment Detail
    There will be two compulsory assignment tasks set during the course. Students will be required to submit their Matlab program work via Moodle and their accompanying handwritten work via submission boxes in the foyer (near Reception on Level 4) of the School of Computer Science. Assignments which are submitted late will incur a penalty which caps the maximum mark obtainable by 25% for each day late. Thus, submissions which are
    1 day late - mark capped at 75%
    2 days late - mark capped at 50%
    3 days late - mark capped at 25%
    more than 3 days late - no marks available.
    Students may wish to submit their work even if no marks are available in order to get some feedback about the quality of their work from the markers of the assignments.
    Students will be required to submit their Matlab program work via Moodle and their accompanying handwritten work via submission boxes in the foyer (near Reception on Level 4) of the School of Computer Science.
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy ( course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.