MECH ENG 7047 - Dynamics & Control II

North Terrace Campus - Semester 2 - 2017

Dynamic systems are found everywhere, from musical instruments to transportation vehicles such as automobiles and aircraft. Even static civil structures such as bridges and buildings exhibit a dynamic response, which must be considered during design and construction of such systems. This course introduces the fundamental concepts of vibrating dynamical systems, from single degree of freedom systems through to continuous and multi-degree of freedom systems. Design of vibration control devices, such as vibration isolators and vibration absorbers, is also considered. A module on engineering acoustics covers the fundamentals of acoustics, and introduction to psychoacoustics, general noise control, and occupational and environmental noise assessment. Concurrently, this course also addresses how to control such dynamic systems using modern state-space control. This involves time domain descriptions of dynamic systems using state-space system models. The characteristics responsible for the dynamic response (poles, zeros, eigenvalues) are presented. Control laws using state-space are introduced, including specification of controller characteristics, controller design using pole placement and optimal (LQR) control (introduction). State observers are presented, including observer design using both pole placement and optimal (Kalman) observers (introduction). Finally, a computer aided control system design methodology is applied to a real MIMO Aerospace platform and several other unstable MIMO systems.

  • General Course Information
    Course Details
    Course Code MECH ENG 7047
    Course Dynamics & Control II
    Coordinating Unit School of Mechanical Engineering
    Term Semester 2
    Level Postgraduate Coursework
    Location/s North Terrace Campus
    Units 3
    Contact Up to 7 hours per week
    Available for Study Abroad and Exchange Y
    Assumed Knowledge 6 units of Level II Applied Maths courses, MECH ENG 1007, MECH ENG 2019
    Course Description Dynamic systems are found everywhere, from musical instruments to transportation vehicles such as automobiles and aircraft. Even static civil structures such as bridges and buildings exhibit a dynamic response, which must be considered during design and construction of such systems.
    This course introduces the fundamental concepts of vibrating dynamical systems, from single degree of freedom systems through to continuous and multi-degree of freedom systems. Design of vibration control devices, such as vibration isolators and vibration absorbers, is also considered. A module on engineering acoustics covers the fundamentals of acoustics, and introduction to psychoacoustics, general noise control, and occupational and environmental noise assessment.
    Concurrently, this course also addresses how to control such dynamic systems using modern state-space control. This involves time domain descriptions of dynamic systems using state-space system models. The characteristics responsible for the dynamic response (poles, zeros, eigenvalues) are presented. Control laws using state-space are introduced, including specification of controller characteristics, controller design using pole placement and optimal (LQR) control (introduction). State observers are presented, including observer design using both pole placement and optimal (Kalman) observers (introduction). Finally, a computer aided control system design methodology is applied to a real MIMO Aerospace platform and several other unstable MIMO systems.
    Course Staff

    Course Coordinator: Dr William Robertson

    NameRoleBuilding/RoomEmail
    Mr Gareth Bridges Lecturer Eng.&Maths .Sciences Building,EM206/207 gareth.bridges@adelaide.edu.au
    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes
    On completion of the vibrations component of this course, students should:
    1. have a good understanding of the principles of vibrations, including concepts of vibration modes and natural frequencies, and the influence of mass, stiffness and damping on the motion of vibratory systems;
    2. have a good understanding of how to estimate system parameters and measure the damping of simple vibratory systems;
    3. understand the principles controlling basic vibration systems including forced vibratory systems, vibration isolation systems, and vibration absorbers;
    4. have a basic understanding of the modes and natural frequencies of simple, idealized continuous systems;
    5. understand the fundamentals of modelling complex continuous systems with discrete lumped-masses and springs;
    On completion of the automatic control component of this course, students should:
    1. be able to construct state space models of dynamic systems, and have an understanding of basic control concepts relating to these such as controllability, observability, poles and zeros, stability;
    2. be able to design full-state feedback control system and optimal control systems;
    3. be able to design an observer to estimate system states, including exposure to stochastic state estimation;
    4. be able to design complex controllers such as observer-feedback and command-tracking;
    5. have had experience with designing real control systems.
    On completion of the acoustics component of this course, students should:
    1. understand the fundamentals of acoustics;
    2. understand basic concepts of psychoacoustics;
    3. understand noise control techniques and able to select an appropriate technique;
    4. be able to select appropriate instruments for measuring sound;
    5. be able to assess occupational and environmental noise problems.

    The above course learning outcomes are aligned with the Engineers Australia Stage 1 Competency Standard for the Professional Engineer.
    The course is designed to develop the following Elements of Competency: 1.1   1.2   1.3   1.4   1.5   1.6   2.1   2.2   2.3   2.4   3.1   3.2   3.3   3.4   3.5   3.6   

    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)
    Deep discipline knowledge
    • informed and infused by cutting edge research, scaffolded throughout their program of studies
    • acquired from personal interaction with research active educators, from year 1
    • accredited or validated against national or international standards (for relevant programs)
    1-10
    Critical thinking and problem solving
    • steeped in research methods and rigor
    • based on empirical evidence and the scientific approach to knowledge development
    • demonstrated through appropriate and relevant assessment
    1-10
  • Learning Resources
    Required Resources
    Course Notes available from Image & Copy Centre or softcopy on MyUni.
    Recommended Resources

    Inman, D.J., Engineering Vibration, Prentice Hall, Second Edition, 2001; or Thompson W.T., 1993, Theory of Vibration with Applications, Fourth Edition, Stanley-Thornes.

    Dorf and Bishop “Modern Control Systems”, Chapt 3; Franklin, Powell and Emami-Naeini Feedback Control of Dynamic Systems”, Chapt 2.2, Chapt 7.1-7.2; Nise “Control Systems Engineering”, Chapt 3.

    Online Learning
    Significant links available to online resources available on MyUni.
  • Learning & Teaching Activities
    Learning & Teaching Modes
    Lectures supported by computer-based tutorials and two laboratories.
    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    As per university recommendations, it is expected that students spend 48hrs/week during teaching periods, and that a 3 unit course has a minimum workload of 156 hours regardless of the length of the course. Additional time may need to be spent acquiring assumed knowledge, working on assessment during non-teaching periods, and preparing for and attending examinations.

    Learning Activities Summary

    Below is a breakdown of the scheduled learning activities for this course:

    Acoustics

    • Fundamentals of Acoustics
      • Amplitude, frequency, wavelength, speed of sound.
      • Logarithmic scale, octave and 1/3rd octave bands.
      • Sound Pressure Level, addition and subtraction of pressure and SPLs.
      • Noise reduction addition.
      • Beating.
      • Sound Intensity, Sound Power, Directivity, SPL at a distance from a sound power source.
      • Subjective assessment of change in SPL & A-weighting.
      • Instrumentation used in acoustics.
    • Psychoacoustics
      • The A-weighting scale.
      • The subjective perception of loudness.
      • The concept of masking noise and the limitation of human hearing.
      • The concept of critical bands.
      • How jury testing can be used for product evaluation.
    • General Noise Control Techniques
      • Basics of Acoustics.
      • Vibro-acoustic noise control.
      • Air-borne noise control.
      • Liquid-borne noise control.
      • Building acoustics.
      • Silencers and mufflers.
    • Occupational and Environmental Noise
      • Noise induced and age related hearing loss.
      • Estimation of noise exposure.
      • Noise exposure trading rules.
      • Metrics used to describe noise spectra in offices, such as Room Criteria.
      • Community noise level criteria.

    Vibrations

    • Free vibration of single degree-of-freedom systems (2 lectures)
    • Forced vibrations (3 lectures)
    • Damped vibrations (2 lectures)
    • Vibration isolation (3 lectures)
    • Multi-degree of freedom systems (4 lectures)
    • Vibration of continuous systems (2 lectures)
    • Determination of natural frequencies and mode shapes (5 lectures)
    • Two laboratories: Balancing machinery and Vibrating beam

    Control

    • Introduction to State Space Modelling (1 lecture)
    • Construction of State Space Models (1 lecture)
    • Modelling Multiple DOF Systems (1 lecture)
    • Modelling Distributed Parameter Systems (1 lecture)
    • Conversion between SS to TF and back again: Control canonical, observer canonical, Jordan form (1 lecture)
    • Solution to state equations, poles, zeros and stability (1 lecture)
    • Controllability and Observability (1 lecture)
    • Feedback Control & Pole Placement (1 lecture)
    • Optimal Control (LQR) (1 lecture) (1 lecture)
    • Observers (Estimators) (1 lecture)
    • Optimal Observers (Kalman-Bucy Filters, LQG) (1 lecture)
    • Reduced Order Observers (1 lecture)
    • Compensators (1 lecture)
    • Reference Input & Command Tracking (1 lecture)
    • Summary (1 lecture)
    • Optional course content includes Linearisation of Non-linear Differential Equations & Lagrangian Mechanics
    • Tutorials using MATLAB (10 tutorials)
    • State Control of a MIMO Aerospace System and at least one other unstable MIMO plant (topic covered via assignments)
    Specific Course Requirements
    Nil.
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary

    Acoustics

    The acoustics assignment is submitted electronically and comprises 4.5% of the total mark for this course.

    Controls

    Two assignments, each worth 4.5% of overall assessment. 10 computer tutorials, worth 3.75% of overall assessment.

    Vibrations

    Four (assessed) assignments provide 8.5% of the overall mark, with each assignment equally weighted. These assignments are set during the semester, each one released at least 2 weeks in advance of the submission deadline. The turnaround time for the return of marked assignments is weeks after the submission deadline. Late assignments are NOT accepted. Extensions are not granted.

    Two equally weighted laboratory classes through the semester provide 4.25% of the overall mark. Students must achieve 35% of the maximum possible Vibrations laboratory mark in order to be eligible to pass the course. Students who have successfully completed the labs in a previous attempt at the course are exempt.

    Variations in the assessment scheme are negotiable on medical and compassionate grounds.

    Assessment Related Requirements

    Note that the laboratory experiments are compulsory and it is a requirement to pass the laboratory experiments to pass the course.

    Assessment Detail

    Controls

    Four optional assignments spaced approximately 3 weeks apart, each worth 2.5% of overall assessment. 13 computer tutorials, each worth 0.25% of overall assessment. One optional discussion board entry worth 0.25%.

    Vibrations

    Four (assessed) assignments provide 20% of the overall Vibrations mark, with each assignment equally weighted. These assignments are set during the semester, each one released at least 2 weeks in advance of the submission deadline. The turnaround time for the return of marked assignments is weeks after the submission deadline. Late assignments are NOT accepted. Extensions are not granted, although exemptions to individual assignments may be granted on medical or compassionate grounds.

    Two equally weighted laboratory classes through the semester provide 10% of the overall mark. Students must achieve 35% of the maximum possible Vibrations laboratory mark in order to be eligible to pass the course. Students who have successfully completed the labs in a previous attempt at the course are exempt.

    The final, open book examination provides 70% of the overall Vibrations mark.

    Variations in the assessment scheme are negotiable on medical and compassionate grounds.

    Submission

    All assignments and practical reports must be submitted either electronically or as a hard copy, as per instructions for each assessment, in the labelled box in the Mechanical Engineering submission area on Level 2 of Engineering South Building. Any assessment submitted as a hard copy must be accompanied by an assessment cover sheet available on the window ledge of room S116. Late assignments and reports will be penalised 10% per day. Extensions for assignments will only be given in exceptional circumstances and a case for this with supporting documentation can be made in writing after a lecture or via email to the lecturer. Hard copy assignments will be assessed and returned in 2 weeks of the due date. There will be no opportunities for re-submission of work of unacceptable standard. Due to the large size of the class feedback on assignments will be limited to in-class discussion resulting from questions from students.

    All tutorials are submitted online using MyUni. Late tutorials cannot be accepted as they are submitted electronically via MyUni which automatically prevents submission after the due time on the due date.

    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.