MECH ENG 1007 - Engineering Mechanics - Dynamics

North Terrace Campus - Summer - 2017

This course teaches students how to apply Newtonian physics to analyse relatively simple physical mechanisms. - with some emphasis on commonly encountered engineering applications. It follows on from the Statics course, but considers systems that are not in equilibrium i.e. with velocity and acceleration. Some of the topics covered are pure kinematics (a mathematical description of motion only), while others are kinetic (determine motion in problems involving the concepts of force and energy). The course is restricted to 2-D (planar) mechanisms.

  • General Course Information
    Course Details
    Course Code MECH ENG 1007
    Course Engineering Mechanics - Dynamics
    Coordinating Unit School of Mechanical Engineering
    Term Summer
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Total: 52 hours
    Available for Study Abroad and Exchange Y
    Prerequisites SACE Stage 2 Maths Studies, Specialist Maths, Physics or equivalent
    Course Description This course teaches students how to apply Newtonian physics to analyse relatively simple physical mechanisms. - with some emphasis on commonly encountered engineering applications. It follows on from the Statics course, but considers systems that are not in equilibrium i.e. with velocity and acceleration. Some of the topics covered are pure kinematics (a mathematical description of motion only), while others are kinetic (determine motion in problems involving the concepts of force and energy). The course is restricted to 2-D (planar) mechanisms.
    Course Staff

    Course Coordinator: Mr Gareth Bridges

    NameRoleBuilding/RoomEmail
    Mr Gareth Bridges Lecturer Eng.&Maths .Sciences Building,EM206/207 gareth.bridges@adelaide.edu.au
    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes
    On successful completion of this course students will be able to:

     
    1 Understand measurement error, and propagation of error in processed data
    2 Understand basic kinematics concepts – displacement, velocity and acceleration (and their angular counterparts);
    3 Understand basic dynamics concepts – force, momentum, work and energy;
    4 Understand and be able to apply Newton’s laws of motion;
    5 Understand and be able to apply other basic dynamics concepts - the Work-Energy principle, Impulse-Momentum principle and the coefficient of restitution;
    6 Extend all of concepts of linear kinetics to systems in general plane motion (applying Euler's Equation and considering energy of a system in general plane motion, and the work of couples and moments of forces)
    7 Learn to solve dynamics problems. Appraise given information and determine which concepts apply, and choose an appropriate solution strategy; and
    8 Attain an introduction to basic machine parts such as pulleys and mass-spring systems.

     
    The above course learning outcomes are aligned with the Engineers Australia Stage 1 Competency Standard for the Professional Engineer.
    The course is designed to develop the following Elements of Competency: 1.1   1.2   1.3   2.1   2.2   2.3   3.1   3.2   3.3   3.4   3.5   3.6   

    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)
    Deep discipline knowledge
    • informed and infused by cutting edge research, scaffolded throughout their program of studies
    • acquired from personal interaction with research active educators, from year 1
    • accredited or validated against national or international standards (for relevant programs)
    1-8
    Critical thinking and problem solving
    • steeped in research methods and rigor
    • based on empirical evidence and the scientific approach to knowledge development
    • demonstrated through appropriate and relevant assessment
    1-8
    Teamwork and communication skills
    • developed from, with, and via the SGDE
    • honed through assessment and practice throughout the program of studies
    • encouraged and valued in all aspects of learning
    1, 3, 6
    Career and leadership readiness
    • technology savvy
    • professional and, where relevant, fully accredited
    • forward thinking and well informed
    • tested and validated by work based experiences
    1, 3, 6
    Intercultural and ethical competency
    • adept at operating in other cultures
    • comfortable with different nationalities and social contexts
    • Able to determine and contribute to desirable social outcomes
    • demonstrated by study abroad or with an understanding of indigenous knowledges
    1, 3, 6
    Self-awareness and emotional intelligence
    • a capacity for self-reflection and a willingness to engage in self-appraisal
    • open to objective and constructive feedback from supervisors and peers
    • able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
    1, 3, 6
  • Learning Resources
    Required Resources
    • Dynamics Lab Notes – available from the Physics School Office.

    • Dynamics Lecture notes – available from Image & Copy Centre

    • Access to MyUni

    Recommended Resources
    • Dynamics Lecture Notes – available from Image & Copy Centre

    • Textbook: ‘Engineering Mechanics – Dynamics’, 12 Edition in SI Units, Hibbelar, R.C.

    The Barr Smith library has many books which are concerned with Dynamics. Students are encouraged to consult these books to enrich their knowledge.

    Textbook purchase is strongly recommended.

    Consult your course co-ordinator for further recommendations

    Online Learning

    The material available online

    • Course Outline and Introduction
    • Course Content
    • Timetable
    • Lecture Notes
    • Assignments
    • Tutorials
    • Solutions
    • Past exams
    • Noticeboard

    Links to these facilities can be found on MyUni .

  • Learning & Teaching Activities
    Learning & Teaching Modes

    Lectures supported by modes developing material covered in lectures. These modes include problem-solving tutorials and a laboratory.

    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    Course workload includes 42 hours of lectures and tutorials, and 9 hours of laboratory.

    Learning Activities Summary

    This course consists of combination of lectures and tutorials:

    Rectilinear Motion, Coupled/Dependent Motion (3 hrs lectures/2 hrs tutorials)
    Curvilinear Motion (5 hrs lectures/2 hrs tutorials)
    Newton’s 2nd Law (6 hrs lectures/2 hrs tutorials)
    Work-Energy Principle/Potential Energy (5 hrs lectures/2 hrs tutorials)
    Impulse-Momentum Principle (4 hrs lectures/2 hrs tutorials)
    Rotational Kinetics (6 hrs lectures/2 hrs tutorials)
    Summary/Revision (1 hr lecture)
    Measurement (3 hrs laboratory)
    Conservation of Energy (3 hrs laboratory)
    Rotational Dynamics (3 hrs laboratory)
    Specific Course Requirements

    Students must achieve at least 35% in each of the three assessment areas:

    Exams – Final Examination

                  Mid-Semester Test

    Assignments

    Laboratory Work

  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary

    All learning objectives are assessed through assignments, laboratories and examination.

    Assignments 15%, laboratory 10%, mid-semester exam 10%, final exam 65%

    Assessment Related Requirements

    Students must achieve at least 35% in each of the three assessment areas:

    Final Examination/Mid-Semester Test; Assignments; Laboratory Work

    Assessment Detail

    Assignments – 6 in total, individual, and available in advance of topic coverage. Submission dates are spaced at approximately two week intervals through the semester.

    Laboratory – assessment based on a pre-lab online quiz, lab participation and lab practice

    Mid-semester exam – closed book, 50 minutes, covers first 4 chapters of the course notes

    Final exam – closed-book, 3 hours, covers entire course.
    Submission

    Assignment submission is by electronic submission on MyUni. Details will be provided by the lecturer. Engineering submission boxes on Level 2 of Engineering South.

    No extensions are granted, but students may receive exemptions on medical or compassionate grounds.

    The turnaround time for assessment is zero – as marking is simultaneous with the assignment deadline.

    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.