MECH ENG 4102 - Advanced PID Control

North Terrace Campus - Semester 2 - 2024

This course covers a variety of advanced topics in automatic control system design with a focus on PID control. Major topics include: system identification for low-order systems, frequency domain analysis of stability and sensitivity, and PID tuning laws and their derivation. Techniques used to analyse and accommodate uncertainty and disturbances in practical systems are taught. Matlab/Simulink is the programming environment used to design and analyse the control systems both theoretically and using hands-on control system apparatus in the lab. Students attend weekly face-to-face laboratory sessions to learn control systems by building them from scratch with a variety of apparatus. Remote students undertake equivalent modules in a virtual Matlab environment.

  • General Course Information
    Course Details
    Course Code MECH ENG 4102
    Course Advanced PID Control
    Coordinating Unit Mechanical Engineering
    Term Semester 2
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 5 hours per week
    Available for Study Abroad and Exchange Y
    Assumed Knowledge MECH ENG 1007, MECH ENG 2019, MECH ENG 3028
    Course Description This course covers a variety of advanced topics in automatic control system design with a focus on PID control. Major topics include: system identification for low-order systems, frequency domain analysis of stability and sensitivity, and PID tuning laws and their derivation. Techniques used to analyse and accommodate uncertainty and disturbances in practical systems are taught. Matlab/Simulink is the programming environment used to design and analyse the control systems both theoretically and using hands-on control system apparatus in the lab. Students attend weekly face-to-face laboratory sessions to learn control systems by building them from scratch with a variety of apparatus. Remote students undertake equivalent modules in a virtual Matlab environment.
    Course Staff

    Course Coordinator: Dr William Robertson

    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes
    On successful completion of this course students will be able to:

     
    1 Explain and generalise key concepts in the field of automatic control;
    2 Design a plant using both time domain and frequency methods, both theoretically and on
    real plant equipment;
    3 Design a given plant, both without and with a control system, disturbances, and
    measurement noise;
    4 Design and tune a PID controller using standard approaches;
    5 Assess and modify a generalised control system for performance, stability, and
    robustness;
    6 Apply signal processing and control system design in hardware for controlling real
    plant equipment.

     
    The above course learning outcomes are aligned with the Engineers Australia Stage 1 Competency Standard for the Professional Engineer. The course develop the following EA Elements of Competency to levels of introductory (A), intermediate (B), advanced (C):  
     
    1.11.21.31.41.51.62.12.22.32.43.13.23.33.43.53.6
    C C C A C C C B A A B C C C C
    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)

    Attribute 1: Deep discipline knowledge and intellectual breadth

    Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.

    1-6

    Attribute 2: Creative and critical thinking, and problem solving

    Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.

    1-6

    Attribute 3: Teamwork and communication skills

    Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.

    1-6

    Attribute 4: Professionalism and leadership readiness

    Graduates engage in professional behaviour and have the potential to be entrepreneurial and take leadership roles in their chosen occupations or careers and communities.

    1-6

    Attribute 8: Self-awareness and emotional intelligence

    Graduates are self-aware and reflective; they are flexible and resilient and have the capacity to accept and give constructive feedback; they act with integrity and take responsibility for their actions.

    1, 2, 6
  • Learning Resources
    Required Resources

    Course Notes available from the Image & Copy Centre or softcopy on MyUni.

    Recommended Resources

    Dorf and Bishop, Modern Control Systems, Chapters 5, 6, 7, 8, 9, 10, 12; Astrom and Hagglund, PID Controllers: Theory, Design and Tuning, Chapters 4 & 5

    Maciejowski, Multivariable Feedback Design, Chapter 1; Xue, Chen and Atherton, Linear Feedback Control – Analysis and Design with Matlab, Chapter 6; Yu, Autotuning of PID Controllers, Chapters 2 and 3; Younkin, Industrial Servo Control Systems – Fundamentals and Applications.

    Online Learning

    Significant links available to online resources available on MyUni.

  • Learning & Teaching Activities
    Learning & Teaching Modes

    No information currently available.

    Workload

    No information currently available.

    Learning Activities Summary

    No information currently available.

  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment Task Task Type Due Weighting Learning Outcome
    Lecture quizzes Formative

    Weekly

    5% 1, 2, 3, 4, 5
    Tutorials Formative Weekly 0% 1, 2, 3, 4, 5
    Laboratory workbooks Formative Weeks 3, 5, 7, 10  10% 1, 2, 3, 4, 5, 6
    Assignments Summative Weeks 3, 6, 9, 12 20% 1, 2, 3, 4, 5
    Control project Summative Week 12 15% 1, 2, 3, 4, 5, 6
    Exam Summative Exam period 50% 1, 2, 3, 4, 5
    Assessment Detail

    No information currently available.

    Submission

    No information currently available.

    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.