MATHS 7100  Real Analysis
North Terrace Campus  Semester 2  2016

General Course Information
Course Details
Course Code MATHS 7100 Course Real Analysis Coordinating Unit School of Mathematical Sciences Term Semester 2 Level Postgraduate Coursework Location/s North Terrace Campus Units 3 Contact Up to 3.5 hours per week Available for Study Abroad and Exchange Y Prerequisites MATHS 1012 Course Description Much of mathematics relies on our ability to be able to solve equations, if not in explicit exact forms, then at least in being able to establish the existence of solutions. To do this requires a knowledge of socalled "analysis", which in many respects is just Calculus in very general settings. The foundations for this work are commenced in Real Analysis, a course that develops this basic material in a systematic and rigorous manner in the context of realvalued functions of a real variable. Topics covered are: Basic set theory. The real numbers and their basic properties. Sequences: convergence, subsequences, Cauchy sequences. Open, closed, and compact sets of real numbers. Continuous functions and uniform continuity. The Riemann integral. Differentiation and Mean Value theorems. The Fundamental Theorem of Calculus. Series. Power series and Taylor series. Convergence of sequences and series of functions. Course Staff
Course Coordinator: Dr Daniel Stevenson
Course Timetable
The full timetable of all activities for this course can be accessed from Course Planner.

Learning Outcomes
Course Learning Outcomes
On successful completion of this course, students will be able to
1. describe fundamental properties of the real numbers that lead to the formal development of real analysis;
2. comprehend rigorous arguments developing the theory underpinning real analysis;
3. demonstrate an understanding of limits and how they are used in sequences, series, differentiation and integration;
4. construct rigorous mathematical proofs of basic results in real analysis;
5. appreciate how abstract ideas and rigorous methods in mathematical analysis can be applied to important practical problems.University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Deep discipline knowledge
 informed and infused by cutting edge research, scaffolded throughout their program of studies
 acquired from personal interaction with research active educators, from year 1
 accredited or validated against national or international standards (for relevant programs)
1,2,3,4,5 Critical thinking and problem solving
 steeped in research methods and rigor
 based on empirical evidence and the scientific approach to knowledge development
 demonstrated through appropriate and relevant assessment
1,2,3,4,5 Teamwork and communication skills
 developed from, with, and via the SGDE
 honed through assessment and practice throughout the program of studies
 encouraged and valued in all aspects of learning
1,2,3,4,5 Selfawareness and emotional intelligence
 a capacity for selfreflection and a willingness to engage in selfappraisal
 open to objective and constructive feedback from supervisors and peers
 able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
1,2,3,4,5 
Learning Resources
Required Resources
None.Recommended Resources
There are many books on real analysis available in the library. Amongst those, the following is a selection of some that are very compatible with the level and objectives of this course:
1. Belding & Mitchell: "Foundations of Analysis";
2. Fitzpatrick: "Real Analysis";
3. Gaughan: "Introduction to Analysis";
4. Lárusson: "Lectures on Real Analysis".Online Learning

Learning & Teaching Activities
Learning & Teaching Modes
This course relies on lectures as the primary delivery mechanism for the material. Tutorials supplement the lectures by providing exercises and example problems to enhance the understanding obtained through lectures. A sequence of written assignments provides assessment opportunities for students to gauge their progress and understanding.Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
ActivityQuantityWorkloadhoursLectures3690Tutorials618Assignments642Test18TOTAL158Learning Activities Summary
Lecture Outline
Basic logic and set theory. The real numbers and their defining properties. (Lectures 14)
Sequences: convergence, properties of limits, subsequences. (Lectures 58)
The topology of the real numbers. (Lectures 911)
Continuity. The key properties of continuous realvalued functions of a real variable. (Lectures 1214)
The Riemann integral. (Lectures 1619)
Differentiation. Mean Value theorems, l'Hôpital's rules. (Lectures 2022)
The inverse function theorem. The fundamental theorem of calculus. (Lectures 2325)
Series. Tests for convergence. (Lectures 2629)
Power series. Taylor's theorem. Sequences and series of functions. (Lectures 3033)
Convergence of sequences and series of functions. (Lectures 3436)
Tutorials
Tutorials will be held in every odd week, covering material from the preceding two weeks of lectures. The first tutorial, in Week 1, will be a review of relevant ideas from Mathematics IA and IB Calculus. 
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
 Assessment must encourage and reinforce learning.
 Assessment must enable robust and fair judgements about student performance.
 Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
 Assessment must maintain academic standards.
Assessment Summary
Component Task Type Due Weighting Learning Outcome Assignments Formative and summative Even weeks
15% All Test Summative Lecture 15 15% 1,2,3,5 Exam Summative Exam Period 70% All
Assessment Related Requirements
An aggregate score of at least 50% is required to pass the course.Assessment Detail
Assignments will be distributed in the middle of each odd week and due at the end of each even week. Each will mainly cover material from the previous weeks' lectures, but may include material from the next one or two lectures. In all, assignments count 15% towards the final mark for the course.
The midsemester test will be held during the 15th lecture period. It will cover the material covered in lectures up to the end of Lecture 12. It will be worth 15% of the final mark.Submission
All written assignments are to be submitted to the designated handin boxes in the School of Mathematical Sciences. Late assignments will not be accepted.
Assignments will have a two week turnaround time for feedback to students.Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 149 Fail P 5064 Pass C 6574 Credit D 7584 Distinction HD 85100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through Access Adelaide.

Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including ongoing engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

Student Support
 Academic Support with Maths
 Academic Support with writing and speaking skills
 Student Life Counselling Support  Personal counselling for issues affecting study
 International Student Support
 AUU Student Care  Advocacy, confidential counselling, welfare support and advice
 Students with a Disability  Alternative academic arrangements
 Reasonable Adjustments to Teaching & Assessment for Students with a Disability Policy
 LinkedIn Learning

Policies & Guidelines
This section contains links to relevant assessmentrelated policies and guidelines  all university policies.
 Academic Credit Arrangement Policy
 Academic Honesty Policy
 Academic Progress by Coursework Students Policy
 Assessment for Coursework Programs
 Copyright Compliance Policy
 Coursework Academic Programs Policy
 Elder Conservatorium of Music Noise Management Plan
 Intellectual Property Policy
 IT Acceptable Use and Security Policy
 Modified Arrangements for Coursework Assessment
 Student Experience of Learning and Teaching Policy
 Student Grievance Resolution Process

Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zerotolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's studentâ€™s disciplinary procedures.
The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.