CHEM ENG 2014 - Heat and Mass Transfer

North Terrace Campus - Semester 2 - 2023

In this course the theories and applications of heat and mass transfer will be introduced. The course will equip the participant with the knowledge and skills required to solve problems for the design, assessment, and analysis of heat and mass transfer processes. Presentation of the course follows separate discussions on the three modes of heat transfer: conduction, convection and radiation. The design and analysis of heat exchanger will be covered. Mass transfer is introduced by drawing parallels between heat and mass transfer. The types of problems solved in the course focus on industrial and real-life applications in the process industries. The approaches introduced to solve problems include analytical solutions, use of numerical methods and empirical approaches based on experimental data.

  • General Course Information
    Course Details
    Course Code CHEM ENG 2014
    Course Heat and Mass Transfer
    Coordinating Unit School of Chemical Eng and Advanced Materials(Ina)
    Term Semester 2
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 4 hours per week
    Available for Study Abroad and Exchange Y
    Assumed Knowledge MATHS 2106
    Course Description In this course the theories and applications of heat and mass transfer will be introduced. The course will equip the participant with the knowledge and skills required to solve problems for the design, assessment, and analysis of heat and mass transfer processes. Presentation of the course follows separate discussions on the three modes of heat transfer: conduction, convection and radiation. The design and analysis of heat exchanger will be covered. Mass transfer is introduced by drawing parallels between heat and mass transfer. The types of problems solved in the course focus on industrial and real-life applications in the process industries. The approaches introduced to solve problems include analytical solutions, use of numerical methods and empirical approaches based on experimental data.
    Course Staff

    Course Coordinator: Associate Professor Philip van Eyk

    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes
    On successful completion of this course students will be able to:

    1 Understand the basic concepts and laws of the three modes of heat transfer.
    2 Apply analytical solution techniques, approximate methods and numerical methods based techniques to the solution of conduction heat-transfer problems.
    3 Utilise empirical equations to solve forced and natural convection heat-transfer problems.
    4 Solve simple radiation heat transfer problems.
    5 Perform basic calculations of common heat exchangers to determine relevant design parameters.
    6 Solve simple diffusion and convection mass transfer problems.
    7 Analyse heat and mass transfer in a small process plant setting.
      
    The above course learning outcomes are aligned with the Engineers Australia Stage 1 Competency Standard for the Professional Engineer.
    The course is designed to develop the following Elements of Competency: 1.1   1.2   1.3   1.6   2.1   2.2   2.3   3.1   

    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)

    Attribute 1: Deep discipline knowledge and intellectual breadth

    Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.

    1-7

    Attribute 2: Creative and critical thinking, and problem solving

    Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.

    1-7

    Attribute 3: Teamwork and communication skills

    Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.

    7

    Attribute 4: Professionalism and leadership readiness

    Graduates engage in professional behaviour and have the potential to be entrepreneurial and take leadership roles in their chosen occupations or careers and communities.

    1-7

    Attribute 5: Intercultural and ethical competency

    Graduates are responsible and effective global citizens whose personal values and practices are consistent with their roles as responsible members of society.

    7

    Attribute 7: Digital capabilities

    Graduates are well prepared for living, learning and working in a digital society.

    1-7

    Attribute 8: Self-awareness and emotional intelligence

    Graduates are self-aware and reflective; they are flexible and resilient and have the capacity to accept and give constructive feedback; they act with integrity and take responsibility for their actions.

    7
  • Learning Resources
    Recommended Resources
    Suggested reading:

    Heat and Mass Transfer, Fundamentals & Applications, 6th Edition, Cengel, (McGraw-Hill)


    Online Learning
    A range of online resources will be provided via MyUni.

  • Learning & Teaching Activities
    Learning & Teaching Modes
    The activities for this course are structured by week and include the following activities:

    Online Theory Lectures

    To be viewed before Workshop session

    Practice Workshops

    Solve problems together in class and go through solutions

    Tutorials

    Solve problems individually and submit answers for assessment
    Due a week after tutorial

    Practical

    Perform experiment in groups and write up short lab report
    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    Activity Contact hours Workload hours Expected total workload hours
    Online Lectures 0 14 14
    Workshops 24 24 48
    Tutorials 22 40 62
    In-class test 4 10 14
    Practical 2 10 12
    TOTAL 52 98 150
    Learning Activities Summary
    Topic 1:  Introduction and 1D Steady-state conduction Heat Transfer

    Topic 2: 2D Steady-state conduction Heat Transfer

    Topic 3: Unsteady-state conduction Heat Transfer

    Topic 4: Diffusion Mass Transfer

    Topic 5:  Principles of Convection Heat Transfer

    Topic 6: Forced Convection Heat Transfer

    Topic 7: Natural Convection Heat Transfer

    Topic 8: Convection Mass Transfer

    Topic 9: Heat Exchenagers

    Topic 10: Fundamentals of Radiation Heat Transfer

    Topic 11: Applications of Radiation Heat Transfer

  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment Task Weighting (%) Individual/ Group Formative/ Summative
    Due (week)*
    Learning outcomes
    On-line Theory Quizzes 5 Individual Formative 2-12 1-6
    Workshop Engagement 5 Individual Formative 1-12 1-6
    Tutorials 20 Individual Formative 2-12 1-6
    Practical Report 5 Individual Formative 11 7
    Tests (x2) 20 Individual Formative 6, 11 1-6
    Final Exam 45 Individual Summative Exams 1-6
    TOTAL
    * The specific due date for each assessment task will be available on MyUni.
     
    This assessment breakdown is registered as an exemption to the University's Assessment for Coursework Programs Policy. The exemption is related to the Procedures clause(s): 1. a. iii    1. b. 3.
    Assessment Detail
    In this course the following assessments will be completed:

    Quizzes (individual) - weekly online quizzes before the next workshop based on the theory covered in the online lecture videos.

    Tutorials (individual) - weekly problems submitted a week after the tutorial session.

    Practical Report (individual) - small report on outcomes of laboratory experiment.

    Tests (individual) - 2 tests taken in class covering the two halves of the course.

    Final Exam - undertaken during the exam period.
    Submission
    All quizzes, tutorials, practical report will be submitted via MyUni. The tests will occur in class.
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.