MECH ENG 4144 - Renewable Fluid Power Technology

North Terrace Campus - Semester 1 - 2015

This course aims to teach students about the mechanical engineering components of wind power, hydro power, wave power and tidal power systems. At the end of the course students are expected to have the knowledge to be able to help design, assess and compare different sustainable power generation systems, factoring in economic and environmental impacts.

  • General Course Information
    Course Details
    Course Code MECH ENG 4144
    Course Renewable Fluid Power Technology
    Coordinating Unit School of Mechanical Engineering
    Term Semester 1
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 4 hours per week
    Available for Study Abroad and Exchange Y
    Assumed Knowledge 6 units of Level II Applied Maths courses, MECH ENG 3105, MECH ENG 3102
    Restrictions Available only to third year BE(Mechanical & Sustainable Energy) and fourth year BE(Mechanical) students
    Course Description This course aims to teach students about the mechanical engineering components of wind power, hydro power, wave power and tidal power systems. At the end of the course students are expected to have the knowledge to be able to help design, assess and compare different sustainable power generation systems, factoring in economic and environmental impacts.
    Course Staff

    Course Coordinator: Dr Cristian Birzer

    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes

    On completion of the course, students should:

    1 To provide an overview of the present usage and development of renewable power derived from air and water, namely wind, wave, hydro and tidal power, and their future prospects.
    2 To describe the fundamental characteristics of major components and their processes for each of these power generation methods.
    3 To understand the basic principles of aerodynamics and hydrodynamics on the generation of sustainable energy from each of the different sources.
    4 To perform a simple economic and environmental assessment of the renewable fluid power technology.
    5 To enable team investigations on the feasibility of renewable energy design systems that meet specific energy demands and minimal environmental impact requirements.
    6 To develop the ability to analyse and compare different power generation alternatives and choose the most suitable for given conditions.
    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)
    Knowledge and understanding of the content and techniques of a chosen discipline at advanced levels that are internationally recognised. 1-4
    The ability to locate, analyse, evaluate and synthesise information from a wide variety of sources in a planned and timely manner. 1-4
    An ability to apply effective, creative and innovative solutions, both independently and cooperatively, to current and future problems. 1-4
    Skills of a high order in interpersonal understanding, teamwork and communication. 1-4
    A proficiency in the appropriate use of contemporary technologies. 1-4
    A commitment to continuous learning and the capacity to maintain intellectual curiosity throughout life. 1-4
    A commitment to the highest standards of professional endeavour and the ability to take a leadership role in the community. 1-4
    An awareness of ethical, social and cultural issues within a global context and their importance in the exercise of professional skills and responsibilities. 1
  • Learning Resources
    Required Resources

    Course notes – Lecture notes which is to be available on MyUni course web page.

    Recommended Resources

    1. Energy Conversion. Yogi Goswami and Frank Kreith, CRC Press, 2008 (ISBN 1-42004-431-1)

    2. Handbook of Energy and renewable Energy. Frank Kreith and Yogi Goswami, CRC Press, 2007 (ISBN 0-8493-1730-4)

    3. Renewable Energy Resources. John Twidell and Tony Weir, E & F.N. Spon 1983. (ISBN 0419114106)

    The Barr Smith Library has many textbooks on renewable energy. Students are encouraged to consult these books to enrich their knowledge.

  • Learning & Teaching Activities
    Learning & Teaching Modes

    No information currently available.

    Workload

    No information currently available.

    Learning Activities Summary

    No information currently available.

  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary

    No information currently available.

    Assessment Detail

    No information currently available.

    Submission

    No information currently available.

    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.