CHEM ENG 7058 - Hydrometallurgy & Electrometallurgy

North Terrace Campus - Semester 2 - 2016

The course information on this page is being finalised for 2016. Please check again before classes commence.

This course aims to provide the Chemical Engineering Minerals Processing students with an understanding of hydrometallurgy and electrometallurgy techniques that are used in the processing of minerals. The main topics covered in hydrometallurgy include acid, alkaline and pressure leaching, thermodynamic and kinetic aspects of leaching, purification of leach liquors by ion exchange, solvent extraction, adsorption using activated carbon, selective precipitation operations, and solid-liquid separation techniques. Several practical processes are studied including heap and tank leching, copper extraction, nickel, zinc, cobalt, gold and uranium processing etc. The main topics in electrometallurgy include Pourbaix diagrams, recovery of metal values by cementation, electrowinning and refining from aqueous solutions, electrolyte preparation, cell potential, effect of additives, aluminium smelting from molten salt electrolytes, design of electrochemical reactors and application of processes for the recovery of copper, zinc, gold and aluminium. At the end of this course you should be able to demonstrate a good understanding of the key factors that govern the successful operation of hydrometallurgical and electrometallurgical processes in the minerals industry.

  • General Course Information
    Course Details
    Course Code CHEM ENG 7058
    Course Hydrometallurgy & Electrometallurgy
    Coordinating Unit School of Chemical Engineering
    Term Semester 2
    Level Postgraduate Coursework
    Location/s North Terrace Campus
    Units 3
    Contact Up to 4 hours per week
    Available for Study Abroad and Exchange Y
    Assumed Knowledge None beyond Year 12 chemistry and physics
    Course Description This course aims to provide the Chemical Engineering Minerals Processing students with an understanding of hydrometallurgy and electrometallurgy techniques that are used in the processing of minerals. The main topics covered in hydrometallurgy include acid, alkaline and pressure leaching, thermodynamic and kinetic aspects of leaching, purification of leach liquors by ion exchange, solvent extraction, adsorption using activated carbon, selective precipitation operations, and solid-liquid separation techniques. Several practical processes are studied including heap and tank leching, copper extraction, nickel, zinc, cobalt, gold and uranium processing etc. The main topics in electrometallurgy include Pourbaix diagrams, recovery of metal values by cementation, electrowinning and refining from aqueous solutions, electrolyte preparation, cell potential, effect of additives, aluminium smelting from molten salt electrolytes, design of electrochemical reactors and application of processes for the recovery of copper, zinc, gold and aluminium. At the end of this course you should be able to demonstrate a good understanding of the key factors that govern the successful operation of hydrometallurgical and electrometallurgical processes in the minerals industry.
    Course Staff

    No information currently available.

    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes
    The course aims to provide an overview of Hydrometallurgy and Electrometallurgy in the minerals processing industry. On successful completion of this course students will be able to:-
    1. Understand the driving forces behind the thermodynamics of leaching and how it impacts the design of a hydrometallurgical process; and
    2. Understand the driving forces behind the kinetics of leaching and how it impacts the design of a hydrometallurgical process; and
    3. Understand the various methods and practices of leaching, including basic design principles; and
    4. Understand the concepts of solids/liquids separation and how to apply to a process; and
    5. Understand the concepts and design of separation and purification including; solvent extraction; ion exchange; precipitation; crystallisation; and membrane treatment; and
    6. Understand the concepts and design of metal recovery processes including; cementation; reduction; electrowinning and electrolytic refining; and precious metal recovery; and
    7. Apply the material learnt to a flow sheet design.
    University Graduate Attributes

    No information currently available.

  • Learning Resources
    Recommended Resources
    Textbook
    Hydrometallurgy – Fundamentals and Applications, Michael L. Free, Wiley 2013, ISBN:978-1-118-23077-0 (Hardback Version)

    Reference Books
    Extractive Metallurgy of Uranium, Robert C. Merritt, 1971, ISBN: 0918062101

    Extractive Metallurgy of Copper, Schlesinger, M. E., King, M. J., Sole, K. C., & Davenport, W. G., 5th Ed ISBN: 978-0-08-096789-9
  • Learning & Teaching Activities
    Learning & Teaching Modes
    The course will be delivered as a series of weekly lectures and fortnightly tutorial sessions. Class discussion sessions are integrated with lectures to enhance the understanding of the new concepts. 
    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    Activity Contact Hours Workload Hours
    Lectures 24 72
    Assignments 10 25
    Examination 0 15
    TOTAL 34 112
    Learning Activities Summary
    This subject comprises of 10 topics as follows,

    Topic 1: Leaching Theory – understanding the kinetic and thermodynamic properties of a leach and how they can be manipulated to control the rate of reaction.

    Topic 2: Leaching Practice – understand the different processes used to leach various minerals

    Topic 3: Solids and Liquid Separation – understand how to separate the valuable products of a leach from the residue

    Topic 4: Solvent Extraction – the first of the concentration topics focussed on solvent extraction of a valuable metal in solution

    Topic 5: Ion Exchange - a concentration topic focussed on using ion exchange to concentrate a valuable metal in solution

    Topic 6: Precipitation and Crystallisation – understand how to selectively precipitate leach products to produce a product or further concentrate the valuable metal

    Topic 7: Membrane Processes – understand how membranes are used in industry to further concentrate valuable minerals or selectively remove deleterious elements

    Topic 8: Contact Reduction and Cementation – understand how this simple process is used to win metals from solution

    Topic 9: Electrowinning and Electrorefining - understand how this process is used to win metals from solution and further refine them.

    Topic 10: Precious Metals – understand the process of recovering precious metals from leach solutions and ER slimes.
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary

    No information currently available.

    Assessment Detail

    No information currently available.

    Submission

    No information currently available.

    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.