ELEC ENG 2105 - Electronic Circuits M

North Terrace Campus - Semester 1 - 2022

Principles, analysis and applications of diodes, bipolar junction transistors and field-effect transistors. Amplifier concepts (types, equivalent circuit, gain, frequency response etc). Review of op-amps and discussion of non-idealities. Introduction to active filters and resonant circuits. Introduction to a circuit simulation tool. Simulation and experiments covering diodes, transistors and op-amps. Introduction to soldering.

  • General Course Information
    Course Details
    Course Code ELEC ENG 2105
    Course Electronic Circuits M
    Coordinating Unit School of Electrical & Electronic Engineering
    Term Semester 1
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 7 hours per week
    Available for Study Abroad and Exchange N
    Incompatible MECH ENG 2015
    Assumed Knowledge ELEC ENG 1100
    Course Description Principles, analysis and applications of diodes, bipolar junction transistors and field-effect transistors. Amplifier concepts (types, equivalent circuit, gain, frequency response etc). Review of op-amps and discussion of non-idealities. Introduction to active filters and resonant circuits. Introduction to a circuit simulation tool. Simulation and experiments covering diodes, transistors and op-amps. Introduction to soldering.
    Course Staff

    Course Coordinator: Dr Ali Pourmousavi Kani

    Part A: Operational Amplifiers, Active Filters, Resonant Circuits
    Dr Ali Pourmousavi Kani
    Course Lecturer
    Office: Ingkarni Wardli, Level 3 Room 3.55
    Phone: 8313 3811
    Email: a.pourm@adelaide.edu.au 

    Part B: Amplifiers, Diodes, Bipolar Transistors, Field-Effect Transistors

    Dr Said Al-Sarawi
    Course Coordinator & Lecturer
    Office: Ingkarni Wardli, Level 3 Room 39
    Phone: 8313 4198
    Email: said.alsarawi@adelaide.edu.au

    Practical Coordinator
    Dr Hong Gunn Chew
    Practical Coordinator
    Office: Ingkarni Wardli room 3.52
    Phone: 8313 1641
    Email: honggunn.chew@adelaide.edu.au 
    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

    This course consists of the following components:

    1. Lectures and Quizzes
    Three lectures a week starting in Week 1.
    Three quizzes will be held in the semester during the lecture timeslots.

    2. Tutorials
    One tutorial every week, starting in Week 2.

    3. Practicals
    One three-hour practical session per week, starting in Week 9 and finishing in Week 12.  The venue for the first few weeks will be in the CATS suite while the remaining practicals will take place in the EM-318/EM-319 laboratories.
  • Learning Outcomes
    Course Learning Outcomes
    On successful completion of this course students will be able to:

    1 Explain the purpose and key performance parameters of amplifier circuits.
    2 Describe the physical principles, construction, characteristics, modelling and limitations of diodes, field-effect and bipolar junction transistors.
    3 Apply simple models of semiconductor devices to analyse simple circuits based on diodes and transistors.
    4 Design amplifier circuits based on operational amplifiers, and explain the effects on performance of non-ideal properties of op amps.
    5 Explain the applications and principles of operation of filters and resonant circuits.
    6 Use a circuit simulation package to determine the expected performance of amplifier and filter circuits.
    7 Construct, test and characterise the performance of amplifier and filter circuits.

    The above course learning outcomes are aligned with the Engineers Australia Stage 1 Competency Standard for the Professional Engineer.
    The course is designed to develop the following Elements of Competency: 1.1   1.2   1.3   1.4   1.5   1.6   2.1   2.2   2.3   2.4   3.1   3.2   3.3   3.4   3.5   3.6   

    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)

    Attribute 1: Deep discipline knowledge and intellectual breadth

    Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.

    1, 2, 4, 5, 7

    Attribute 2: Creative and critical thinking, and problem solving

    Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.

    3, 4, 6, 7

    Attribute 3: Teamwork and communication skills

    Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.

  • Learning Resources
    Required Resources
    Text Book

    Adel S. Sedra and Kenneth C. Smith, "Microelectronic Circuits," 6th Edition (or Higher), Oxford University Press.

    A set of course notes, practice problems and other supporting materials will also be available for downloading from the course web site.
    Recommended Resources
    The following book is a suggested reference for the course:
    Adel S. Sedra and Kenneth C. Smith, "Microelectronic Circuits," International 7th Edition (or Higher), Oxford University Press.
    Online Learning
    Extensive use will be made of the course website.  Course notes, tutorials, practicals and practice problems will be available. Where the lecture theatre facilities permit, recordings of lectures will also be available.

    Please note, tutorials and practicals will not be recorded.
  • Learning & Teaching Activities
    Learning & Teaching Modes
    This course relies on lectures as the primary delivery mechanism for the material. Tutorials supplement the lectures by providing exercises and example problems to enhance the understanding obtained through lectures. Practicals are used to provide hands-on experience for students to reinforce the theoretical concepts encountered in lectures. Continuous assessment activities provide formative assessment opportunities for students to gauge their progress and understanding.

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    Activitiy Detail Contact Hours       Workload Hours
    Lecture 34 - 37 (3 lectures/week) 34-37 60-70
    Tutorials 8 (each week, except for test weeks) 8 18
    Practicals 12 (4 sessions - 3h/session)    12 36
    In-class tests      3 tests 3 12
    Exam 1 exam 2 30
    Totals 59-62 156-166
    Learning Activities Summary








    Week 1



    Introduction and course organisation

    Review of circuit principles





    Review of basic analysis methods (KCL, KVL)

    Systematic methods; nodal and mesh analysis





    Week 2








    RC and RL circuits – time domain analysis



    Steady state sinusoids and frequency domain analysis


    Week 3



    Frequency response and Bode plotsRLC networks – time domain





    RLC networks – time and frequency domains



    Op Amps (review). Simple amplifiers.  Integrator and differentiator (time domain)


    Week 4



    Op amps – frequency domain analysis – HP and LP filters





    Op amps – frequency domain analysis – bandpass and bandstop filters.

    Higher order filters



    Op amps – non ideal properties.


    Test 1 - Friday Napier 208

    Week 5



    Diodes – DC characteristics (1/2)





    Diodes – DC characteristics (2/2)



    Diode Physics


    Week 6



    Diode Application





    BJT structure (1/2)



    BJT structure (2/2)


    Week 7










    BJT circuit models 1



    BJT circuit models 2


    Week 8



    BJT circuit models 3






    Review Lecture



    MOSFET structure


    Test 2 (Diode and BJT) - Friday Napier 208

    Week 9



    Test 2 – Diode and BJT



    Prac I (1/2) - Altium Design and Simulation



    MOSFET circuit models (1/2)



    MOSFET circuit models (2/2)





    MOSFET Amplifiers (1/2)



    Prac I (1/2) - Altium Design and Simulation


    MOSFET Amplifiers (2/2)



    BJT/MOSFET - Differential Amplifiers and current mirrors (1/3)


    Week 11



    BJT/MOSFET – Differential amplifier and current mirrors (2/3)



    Prac II (1/2)- Opamp Circuit Design and Soldering


    BJT/MOSFET – Differential amplifier and current mirrors (3/3)



    Amplifier class and BJT output stage (1/2)


    Week 12



    Amplifier classes and BJT output stage (2/2)



    Prac II (1/2)- Opamp Circuit Design and Soldering


    Review Lecture



    Test 3 – MOSFET & Diff amp


    Test 3 (MOSFET and BJT Amplifiers) - Friday Napier 208

    Week 13

    Swot Vac






    Specific Course Requirements
    Students are required to have access to Altium software. This is available at various facilities such as the CATS suite or the undergraduate computer labs of the School of Electrical & Electronic Engineering. It is the individual student’s responsibility to ensure his or her access to these facilities at appropriate times is available.
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment Task Weighting (%) Individual/ Group Formative/ Summative
    Due (week)*
    Hurdle criteria Learning outcomes
    Tutorials 10 Individual Formative Weeks 2,3,5,6,7,9,10,11   1. 2. 3. 4. 5.
    In-class tests 10 (3 Tests - best of 2) Individual Summative Weeks 4,8,12   1. 2. 3. 4. 5.
    Practicals 20 Group Formative 9,10,11,12   3. 6. 7.
    Exam 55 Individual Summative End of semester Min 40% 1. 2. 3. 4. 5.
    Total 100          

    * The specific due date for each assessment task will be available on MyUni.
    This assessment breakdown complies with the University's Assessment for Coursework Programs Policy.
    This course has a hurdle requirement. Meeting the specified hurdle criteria is a requirement for passing the course.

    Due to the current COVID-19 situation modified arrangements have been made to assessments to facilitate remote learning and teaching. Assessment details provided here reflect recent updates.

    Final Exam Assessment: The weighting for final exam for undergraduate course will drop from 55% of the total assessment to 50%. The rationale behind this change is to reduce the weighing of the final Exam by 5% and use the difference for more weighting on continuous assessment. Considering that the final exam most likely will be online, this will help students better prepare for the final exam. This update should reduce the pressure that some students my face when it come the final exam. If that online examination goes ahead, the online exam will be open book, where students will be required to submit scanned copies of their worked solutions during a timed session. The details for that will be provided in due date.

    Test Assessment: The test assessment will not change, but it will be run online in a similar environment to the way we will be running the final exam. For that, a number of questions will be provided and submission for these solutions will have to be done with submission working submitted online. The test will be run during the allocated time set for the course and instruction on how to access the test and how to answer these questions will be provided before the test.

    Summary of Revised Assessment:
    Online Exam - 50% weighting (decreased from 55%) - Hurdle 40%
    Tutorials (Preparation) - 10% weighting (same) - Best 6 of 8
    Tests (3 online) - 20% weighting (increased from 15%)- Best 2 of 3
    Pracs (Simulation Projects) - 20% weighting (same) - Hurdle 40%

    Assessment Related Requirements
    The practical and the examination are hurdle requirements for this course. It is necessary to achieve at least 40% in both the practical and the exam.  If this is not achieved, the total course mark will be limited to a maximum of 49.

    A hurdle requirement is defined by the University's Assessment for Coursework Programs policy as "...an assessment task mandating a minimum level of performance as a condition of passing the course. If a student fails to meet a hurdle requirement (normally no less than 40%), and is assigned a total mark for the course in the range of 45-49, then the student is entitled to an offer of additional assessment of some type. The type of assessment is to be decided by the School Assessment Review Committee when determining final results. The student’s final total mark will be entered at no more than 49% and the offer of an additional assessment will be specified eg. US01. Once the additional assessment has been completed, this mark will be included in the calculation of the total mark for the course and the better of the two results will apply. Note however that the maximum final result for a course in which a student has sat an additional assessment will be a “50 Pass”.

    If a student is unable to meet a hurdle requirement related to an assessment piece (may be throughout semester or at semester’s end) due to medical or compassionate circumstances beyond their control, then the student is entitled to an offer of replacement assessment of some type. An interim result of RP will be entered for the student, and the student will be notified of the offer of a replacement assessment. Once the replacement assessment has been completed, the result of that assessment will be included in the calculation of the total mark for the course.
    Assessment Detail
    The tutorial papers require each student to submit written responses to selected sets of problems. The submissions may contain any of the following: written answers, mathematical derivations, sketches, graphs and print-outs from appropriate software packages. There will be 6 separate tutorials, each will be awarded a mark on a 0-2 scale based on effort. Assessment of the tutorials will occur in the Tutorial classes.

    There are three 50 minute closed book tests in the course. The tests will require students to submit short written responses to a set of questions under examination conditions. Each test will be worth 5% to the overall assessment.

    The practical needs to be conducted during the designated laboratory sessions as listed in the Course Timetable. Students will be required to submit a written report to the practical work, which is assessed. The practical reports will be worth 15% of the overall assessment.

    The exam will be a closed book examination.
    All written submissions to formative assessment activities are to be submitted to designated boxes within the School of Electrical & Electronic Engineering by 3:00pm on the specified dated and must be accompanied by a signed cover sheet. Copies of blank cover sheets are available from the School office in Ingkarni Wardli 3.26. No late submissions will be accepted. All formative assessments will have a two week turn-around time for provision of feedback to students.

    Full details can be found on the School website:
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

    The students liked:

    • Practicals: lots of students found the pracs interesting and insightful
    • Circuit Analysis Part: because it had more revision and easier to understand
    • Electronics parts: covers lots of technologies that is used in nowadays devices

    Some students felt that:

    • More examples
    • Demonstrators are not providing answers to some specific questions raised during the pracs sessions.

    School response to SELT Feedback

    • More examples have been added, in addition a trial for a circuit simulator based examples is provided. The simulator that is used is called LTspice from Analog Company, which can be freely downloaded from https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html The examples will be provided on the course webpage for the first part (Diode and diode applications) for students to try and experiment with. Support for using this simulator will be provided during the consulting hour for the course.

    • In general demonstrators are instructed not to answer design specific questions, their role to help and support students do their practicals. Nonetheless, the practicals documents have been revised to clarify some points. Also, the expectation on the students and demonstrators will be clarified at the beginning of the practical sessions.
  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.