PURE MTH 4119 - Complex Analysis - Honours

North Terrace Campus - Semester 1 - 2022

When the real numbers are replaced by the complex numbers in the definition of the derivative of a function, the resulting (complex-) differentiable functions turn out to have many remarkable properties not enjoyed by their real analogues. These functions, usually known as holomorphic functions, have numerous applications in areas such as engineering, physics, differential equations and number theory, to name just a few. The focus of this course is on the study of holomorphic functions and their most important basic properties. Topics covered are: Complex numbers and functions; complex limits and differentiability; elementary examples; analytic functions; complex line integrals; Cauchy's theorem and the Cauchy integral formula; Taylor's theorem; zeros of holomorphic functions; Rouche's Theorem; the Open Mapping theorem and Inverse Function theorem; Schwarz' Lemma; automorphisms of the ball, the plane and the Riemann sphere; isolated singularities and their classification; Laurent series; the Residue Theorem; calculation of definite integrals and evaluation of infinite series using residues; Montel's Theorem and the Riemann Mapping Theorem.

  • General Course Information
    Course Details
    Course Code PURE MTH 4119
    Course Complex Analysis - Honours
    Coordinating Unit School of Mathematical Sciences
    Term Semester 1
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 3 hours per week
    Available for Study Abroad and Exchange Y
    Prerequisites MATHS 2100 or MATHS 2101 or MATHS 2202 or ELEC ENG 2106
    Assumed Knowledge MATHS 2101
    Restrictions Honours students only
    Course Description When the real numbers are replaced by the complex numbers in the definition of the derivative of a function, the resulting (complex-) differentiable functions turn out to have many remarkable properties not enjoyed by their real analogues. These functions, usually known as holomorphic functions, have numerous applications in areas such as engineering, physics, differential equations and number theory, to name just a few. The focus of this course is on the study of holomorphic functions and their most important basic properties.

    Topics covered are: Complex numbers and functions; complex limits and differentiability; elementary examples; analytic functions; complex line integrals; Cauchy's theorem and the Cauchy integral formula; Taylor's theorem; zeros of holomorphic functions; Rouche's Theorem; the Open Mapping theorem and Inverse Function theorem; Schwarz' Lemma; automorphisms of the ball, the plane and the Riemann sphere; isolated singularities and their classification; Laurent series; the Residue Theorem; calculation of definite integrals and evaluation of infinite series using residues; Montel's Theorem and the Riemann Mapping Theorem.
    Course Staff

    Course Coordinator: Dr David Baraglia

    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes
    1. Demonstrate understanding of the basic concepts underlying complex analyis.

    2. Demonstrate familiarity with a range of examples of these concepts.

    3. Prove basic results in complex analysis.

    4. Apply the methods of complex analysis to evaluate definite integrals and infinite series.

    5. Demonstrate understanding and appreciation of deeper aspects of complex analysis such as the Riemann Mapping theorem.

    6. Demonstrate skills in communicating mathematics orally and in writing.
    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)

    Attribute 1: Deep discipline knowledge and intellectual breadth

    Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.

    1,2,3,4,5

    Attribute 2: Creative and critical thinking, and problem solving

    Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.

    1,2,3,4

    Attribute 3: Teamwork and communication skills

    Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.

    6

    Attribute 4: Professionalism and leadership readiness

    Graduates engage in professional behaviour and have the potential to be entrepreneurial and take leadership roles in their chosen occupations or careers and communities.

    5,6
  • Learning Resources
    Required Resources
    None.
    Recommended Resources
    In increasing order of difficulty, the following books are available in the BSL. The closest to the level of this course is 2.

    1. Churchhill & Brown: Complex Variables and Applications; 517.53 C563
    2. Marsden & Hoffman: Basic Complex Analysis; 517.54 M363b
    3. Conway: Functions of One Complex Variable; 517.53 C767f
    4. Ahlfors: An Introduction to the Theory of Analytic Functions of One Complex Variable; 517.53 A28
    Online Learning
    This course uses MyUni exclusively for providing electronic resources, such as lecture notes, assignment papers, sample solutions, discussion boards, etc. It is recommended that students make appropriate use of these resources.
  • Learning & Teaching Activities
    Learning & Teaching Modes
    Each week there will be a one-hour workshop, a tutorial and a quiz. Weekly reading material will be assigned. It is expected that students have read this material before the workshop. The workshops will be a mix of lecturing, students working on problems, together and with guidance from the lecturer, and consulting. In weekly tutorials students will form small groups and work through tutorial problems and discuss them with the lecturer and their peers. Fortnightly homework assignments and weekly quizzes will help students strengthen their understanding of the theory and their skills in applying it, allowing them to gauge their progress.
    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    Activity Quantity Workload Hours
    Workshops 12 12
    Assignments 5 50
    Tutorials 12 24
    Quizzes 10 10
    Self-study 60
    Total 156
    Learning Activities Summary
    Lecture Schedule
    Week 1 Complex numbers, functions and differentiation.
    Week 2 Cauchy-Riemann equations. Elementary functions.
    Week 3 Further examples, harmonic functions, complex series.
    Week 4 Analytic functions. Complex antiderivatives.
    Week 5 Integration of complex functions.
    Week 6 Cauchy-Goursat theorem. The Cauchy integral formula.
    Week 7 Consequences of the Cauchy integral formula.
    Week 8 Taylor's theorem. Zeros of holomorphic functions.
    Week 9 The open mapping and inverse function theorems. Isolated singularities of holomorphic functions.
    Week 10 Meromorphic functions, Laurent series; residues.
    Week 11 Applications of residues. Simply connected domains.
    Week 12     The Riemann Mapping theorem.
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment Task Task Type Due Weighting Learning Outcomes
    Exam Summative Examination Period 50% All
    Mid-semester test Summative Week 6 15% 1,2,3,6
    Quizzes Formative and summative Weekly 10% All
    Assignments Formative and summative Even weeks 25% All
    Assessment Related Requirements
    An aggregate score of 50% is required to pass the course.
    Assessment Detail
    Assessment Set Due Weighting
    Assignment 1 Week 1 Week 2 5%
    Quiz 1 Week 2 Week 2 1%
    Quiz 2 Week 3 Week 3 1%
    Assignment 2 Week 3 Week 4 5%
    Quiz 3 Week 4 Week 4 1%
    Quiz 4 Week 5 Week 5 1%
    Mid-semester test Week 6 Week 6 15%
    Quiz 5 Week 7 Week 7 1%
    Assignment 3 Week 7 Week 8 5%
    Quiz 6 Week 8 Week 8 1%
    Quiz 7 Week 9 Week 9 1%
    Assignment 4 Week 9 Week 10 5%
    Quiz 8 Week 10 Week 10 1%
    Quiz 9 Week 11 Week 11 1%
    Assignment 5 Week 11 Week 12 5%
    Quiz 10 Week 12 Week 12 1%
    Submission
    Assignments will have a maximum two-week turn-around time for feedback to students.
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M11 (Honours Mark Scheme)
    GradeGrade reflects following criteria for allocation of gradeReported on Official Transcript
    Fail A mark between 1-49 F
    Third Class A mark between 50-59 3
    Second Class Div B A mark between 60-69 2B
    Second Class Div A A mark between 70-79 2A
    First Class A mark between 80-100 1
    Result Pending An interim result RP
    Continuing Continuing CN

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.