PURE MTH 4124 - Finite Geometry - Honours

North Terrace Campus - Semester 2 - 2018

Projective geometry is one of the important modern geometries introduced in the 19th century. Projective geometry is more general than our usual Euclidean geometry, and it has useful applications in Information Security, Statistics, Computer Graphics and Computer Vision. The majority of this course will be on projective planes. Topics covered are: projective planes, homogeneous coordinates, field planes, collineations of projective planes, conics in field planes, k-arcs in projective planes, projective geometry of general dimension, quadrics and ovoids in 3-dimensional projective space.

  • General Course Information
    Course Details
    Course Code PURE MTH 4124
    Course Finite Geometry - Honours
    Coordinating Unit School of Mathematical Sciences
    Term Semester 2
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 3 hours per week
    Available for Study Abroad and Exchange N
    Prerequisites MATHS 1012
    Course Description Projective geometry is one of the important modern geometries introduced in the 19th century. Projective geometry is more general than our usual Euclidean geometry, and it has useful applications in Information Security, Statistics, Computer Graphics and Computer Vision. The majority of this course will be on projective planes.

    Topics covered are: projective planes, homogeneous coordinates, field planes, collineations of projective planes, conics in field planes, k-arcs in projective planes, projective geometry of general dimension, quadrics and ovoids in 3-dimensional projective space.
    Course Staff

    Course Coordinator: Dr Susan Barwick

    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes
    1. Demonstrate a deep understanding of the axiomatic approach to projective spaces.
    2. Be able to perform calculations in Desarguesian planes and projective 3-spaces.
    3. Classify the structure of collineations of projective planes.
    4. Demonstrate an understanding of the theory of conics in field planes.
    5. Apply the theory to solve problems of varying levels of difficulty.
    6. Demonstrate skills in communicating mathematics orally and in writing.
    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)
    Deep discipline knowledge
    • informed and infused by cutting edge research, scaffolded throughout their program of studies
    • acquired from personal interaction with research active educators, from year 1
    • accredited or validated against national or international standards (for relevant programs)
    1,2,3,4,5
    Critical thinking and problem solving
    • steeped in research methods and rigor
    • based on empirical evidence and the scientific approach to knowledge development
    • demonstrated through appropriate and relevant assessment
    1,2,3,4,5
    Teamwork and communication skills
    • developed from, with, and via the SGDE
    • honed through assessment and practice throughout the program of studies
    • encouraged and valued in all aspects of learning
    6
    Career and leadership readiness
    • technology savvy
    • professional and, where relevant, fully accredited
    • forward thinking and well informed
    • tested and validated by work based experiences
    5,6
    Intercultural and ethical competency
    • adept at operating in other cultures
    • comfortable with different nationalities and social contexts
    • Able to determine and contribute to desirable social outcomes
    • demonstrated by study abroad or with an understanding of indigenous knowledges
    6
    Self-awareness and emotional intelligence
    • a capacity for self-reflection and a willingness to engage in self-appraisal
    • open to objective and constructive feedback from supervisors and peers
    • able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
    6
  • Learning Resources
    Required Resources
    None.
    Recommended Resources
    The material in the course is closely related to the textbook: L.R.A. Casse, Projective Geometry, An Introduction.
    Online Learning
    This course uses MyUni exclusively for providing electronic resources, such as lecture notes, assignment papers, etc.
  • Learning & Teaching Activities
    Learning & Teaching Modes
    The lecturer guides the students through the course material in 30 lectures. Students are expected to engage with the material in the lectures. Interaction with the lecturer and discussion of any difficulties that arise during the lecture is encouraged. Students are expected to attend all lectures. In fortnightly tutorials students present their solutions to assigned exercises and discuss them with the lecturer and each other. Fortnightly homework assignments help students strengthen their understanding of the theory and their skills in applying it, and allow them to gauge their progress.
    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    Activity Quantity Workload Hours
    Lectures 30 90
    Tutorials 5 25
    Online Quizzes 6
    Assignments 5 35
    Total 156
    Learning Activities Summary
    Lecture Outline
    1. Projective Planes, 3 lectures (extended Euclidean plane, finite projective planes)
    2. Projective space, 2 lectures (extended Euclidean 3-space, r-dimensional projective space)
    3. Field Planes, 3 lectures (fields, homogeneous coordinates, subplanes)
    4. Collineations, 7 lectures (eomographies, automorphic collineations, fundamental theorem of field planes, central collineations, elations, homologies)
    5. PG(r,F), 1 lecture
    6. Conics in PG(2,F), 6 lectures (J's equation, polarity, conics when charF=2, conics in the real projective plane)
    7. Combinatorial structures (latin squares, incidence matrices, difference sets), 8 lectures
    Tutorials in Weeks 2, 4, 6, 8, 10, 12 cover the material of the previous two weeks.

    Small Group Discovery Experience
    The final topic on Combinatorial Structures will be conducted in a flipped classroom mode, and students will work in small groups of 2-3 students during the lecture time slots.
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment Task   Weighting 
    Learning Outcomes
    exam 70% all
    assignments 15% all
    tutorials and quizzes        15% all
    Assessment Related Requirements
    An aggregate score of 50% is required to pass the course.
    Assessment Detail
    Assignments are due in weeks 3, 5, 7, 9, 11, each is worth 3%, contributing a total of 15%.

    Tutorials and online quizzes will be regularly held to enable active learning. These contribute a total of 15%.
    Submission
    Homework assignments must be submitted on time with a signed assessment cover sheet. Late assignments will not be accepted. Assignments will be returned within two weeks. Students may be excused from an assignment for medical or compassionate reasons.  Documentation is required and the lecturer must be notified as soon as possible.
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M11 (Honours Mark Scheme)
    GradeGrade reflects following criteria for allocation of gradeReported on Official Transcript
    Fail A mark between 1-49 F
    Third Class A mark between 50-59 3
    Second Class Div B A mark between 60-69 2B
    Second Class Div A A mark between 70-79 2A
    First Class A mark between 80-100 1
    Result Pending An interim result RP
    Continuing Continuing CN

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.