MATHS 3026 - Cryptography III

North Terrace Campus - Semester 2 - 2020

Cryptography is a vital aspect of cybersecurity. This course introduces modern cryptographic techniques in the context of information security in the workplace. It provides a sound understanding of the different types of cryptosystems available, the practical issues of applying cryptographic methods and key issues in the management of information security. Topics covered are introduction to cryptography: encryption, decryption, attacks; symmetric encryption: stream and block ciphers, AES, block cipher modes; hash functions; message authentication; public key cryptography; data integrity; digital signature schemes; authentication; cryptographic protocols; key management; applications: credit card transactions, wireless LAN, mobile telecommunications.

  • General Course Information
    Course Details
    Course Code MATHS 3026
    Course Cryptography III
    Coordinating Unit School of Mathematical Sciences
    Term Semester 2
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 5 hours per week
    Available for Study Abroad and Exchange Y
    Prerequisites MATHS 1004 or MATHS 1008 or MATHS 1011 or MATHS 1013
    Course Description Cryptography is a vital aspect of cybersecurity. This course introduces modern cryptographic techniques in the context of information security in the workplace. It provides a sound understanding of the different types of cryptosystems available, the practical issues of applying cryptographic methods and key issues in the management of information security. Topics covered are introduction to cryptography: encryption, decryption, attacks; symmetric encryption: stream and block ciphers, AES, block cipher modes; hash functions; message authentication; public key cryptography; data integrity; digital signature schemes; authentication; cryptographic protocols; key management; applications: credit card transactions, wireless LAN, mobile telecommunications.
    Course Staff

    Course Coordinator: Dr Susan Barwick

    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes
    1. Understand that different types of cryptosystems are needed for different security needs.
    2. Understand the practical issues associated with using cryptography..
    3. Identify key issues relating to managing security of information
    4. An awareness that cryptography is just one part of information security in the workplace.
    5. How to think about the adversary in the context of cryptography.
    6. Look at existing toolkits, understand their core functionality and know how to use them.
    7. Understand why key management is an essential process which underpins the security of any cryptographic scheme.
    8. Develop the tools to implement an application specific key management process.
    9. Understand why no cryptographic mechanism should be implemented before consulting the relevant standard.
    University Graduate Attributes

    No information currently available.

  • Learning Resources
    Required Resources
    Access to the internet.
    Recommended Resources
    Keith M. Martin. Everyday Cryptography, Second Edition, Oxford University Press, 2017.
    Online Learning
    This course uses MyUni exclusively for providing electronic resources,
    such as lecture notes, assignment papers, and sample solutions. 
    Students should make appropriate use of these resources.  Link to MyUni
    login page: https://myuni.adelaide.edu.au/webapps/login/
  • Learning & Teaching Activities
    Learning & Teaching Modes
    The lecturer guides the students through the course material in 30 lectures. Students are expected to engage with the material in the
    lectures. Interaction with the lecturer and discussion of any difficulties that arise during the lecture is encouraged. Students are expected to attend all lectures.

    In fortnightly workshops, students develop communication skills by working through a series of questions in small groups.

    Regular online quizzes and fortnightly homework assignments help students strengthen their understanding of the theory and their skills in applying it, and allow them to gauge their progress.


    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    Activity Quantity Workload Hours
    Lectures 30 75
    Workshops 6 12
    Online Quizzes 19
    Assignments 5 20
    Essay 1 30
    Total 156
    Learning Activities Summary
    Cryptography is a vital aspect of cybersecurity. This course introduces modern cryptographic techniques in the context of information security in the workplace. It provides a sound understanding of the different types of cryptosystems available, the practical issues of applying cryptographic methods and key issues in the management of information security.

    The course considers the fundamental principles of cryptography, stressing the core information that a practitioner of cryptography needs to know. It does not focus on the mathematical details of current technology used in modern cryptography. The emphasis is on why cryptography is important, how it can be used, and issues relating to its implementation. Students will gain an understanding of issues relating to data security in the real world.

    The course does not assumed any prior knowledge of cryptography, and only assumes a limited mathematical background.

    Topics covered are introduction to cryptography: encryption, decryption, attacks; symmetric encryption: stream and block ciphers, AES, block cipher modes; hash functions; message authentication; public key cryptography; data integrity; digital signature schemes; authentication; cryptographic protocols; key management; applications such as TLS and wireless LAN.
    Small Group Discovery Experience
    Fortnightly workshops engage students in small group problem solving sessions.
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment Task   Weighting 
    exam 60%
    assignments 10%
    online quizzes        10%
    workshops 5%
    essay 15%
    Assessment Related Requirements
    An aggregate score of at least 50% is required to pass the course.
    Assessment Detail

    No information currently available.

    Submission

    No information currently available.

    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.