DATA 7202OL - Applied Data Science

Online - Online Teaching 2 - 2020

An introduction to the role and application of data science in modern organisations and society. Case studies will be used to demonstrate current best practice as well as common pitfalls. Processes for data collection, analysis, verification and validation. The use of data for modelling, prediction and decision support. An overview of widely used tools for data analysis and modelling.

  • General Course Information
    Course Details
    Course Code DATA 7202OL
    Course Applied Data Science
    Coordinating Unit School of Computer Science
    Term Online Teaching 2
    Level Postgraduate Coursework
    Location/s Online
    Units 3
    Contact Up to 4 hours per week
    Available for Study Abroad and Exchange N
    Course Description An introduction to the role and application of data science in modern organisations and society. Case studies will be used to demonstrate current best practice as well as common pitfalls. Processes for data collection, analysis, verification and validation. The use of data for modelling, prediction and decision support. An overview of widely used tools for data analysis and modelling.
    Course Staff

    Course Coordinator: Professor Lewis Mitchell

    Associate Professor Nickolas Falkner
    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes
    Upon completion of this course/subject, students will be able to:
    1. Recommend methodologies for the use of data science in business/ in modern organisations and societies
    2. Evaluate data science use to describe best practice in modern organisations and societies
    3. Analyse issues associated with the use of data for solving complex problems
    4. Evaluate the tools used in the data science community for reporting on data analysis.
    5. Critique data science solutions against recommended methodologies and best practice, identifying areas for improvement.
    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)
    Deep discipline knowledge
    • informed and infused by cutting edge research, scaffolded throughout their program of studies
    • acquired from personal interaction with research active educators, from year 1
    • accredited or validated against national or international standards (for relevant programs)
    1,3,4,5
    Critical thinking and problem solving
    • steeped in research methods and rigor
    • based on empirical evidence and the scientific approach to knowledge development
    • demonstrated through appropriate and relevant assessment
    2,4,5
    Teamwork and communication skills
    • developed from, with, and via the SGDE
    • honed through assessment and practice throughout the program of studies
    • encouraged and valued in all aspects of learning
    1,3,5
    Career and leadership readiness
    • technology savvy
    • professional and, where relevant, fully accredited
    • forward thinking and well informed
    • tested and validated by work based experiences
    3,5
    Intercultural and ethical competency
    • adept at operating in other cultures
    • comfortable with different nationalities and social contexts
    • able to determine and contribute to desirable social outcomes
    • demonstrated by study abroad or with an understanding of indigenous knowledges
    1,5
    Self-awareness and emotional intelligence
    • a capacity for self-reflection and a willingness to engage in self-appraisal
    • open to objective and constructive feedback from supervisors and peers
    • able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
    5
  • Learning Resources
    Required Resources
    There are no required resources beyond meeting course pre-requisites.
    Recommended Resources
    Students are encouraged to have access to the programming environment that they used for the earlier courses, for Python. Beyond that, there are no recommended texts or software.
    Online Learning
    All material is available online from the University's MyUni Learning Management System. The material is available for two weeks prior to the course, in readonly mode, and all weeks are published to allow students to plan.
  • Learning & Teaching Activities
    Learning & Teaching Modes

    No information currently available.

    Workload

    No information currently available.

    Learning Activities Summary

    No information currently available.

  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary

    No information currently available.

    Assessment Detail

    No information currently available.

    Submission

    No information currently available.

    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.