## MATHS 7027OL - Mathematical Foundations of Data Science

### Online - Online Teaching 1 - 2022

This course introduces fundamental mathematical concepts relevant to computer science and provides a basis for further postgraduate study in data science, statistical machine learning, and cybersecurity. Topics covered are probability: sets, counting, probability axioms, Bayes theorem; optimisation and calculus: differentiation, integration, functions of several variables, series approximations; linear algebra: vector and matrices, matrix algebra, vector spaces; discrete mathematics and statistics: linear regression, linear least squares, regularisation. Applications of the theory to data science and machine learning will be developed.

• General Course Information
##### Course Details
Course Code MATHS 7027OL Mathematical Foundations of Data Science School of Mathematical Sciences Online Teaching 1 Postgraduate Coursework Online 3 Up to 5 hours per week N Carousel 1 Courses: COMP SCI 7212OL, COMP SCI 7210OL, DATA 7201OL & DATA 7202OL Graduate Diploma in Data Science (Applied) OL OR Master of Data Science (Applied) OL Only This course introduces fundamental mathematical concepts relevant to computer science and provides a basis for further postgraduate study in data science, statistical machine learning, and cybersecurity. Topics covered are probability: sets, counting, probability axioms, Bayes theorem; optimisation and calculus: differentiation, integration, functions of several variables, series approximations; linear algebra: vector and matrices, matrix algebra, vector spaces; discrete mathematics and statistics: linear regression, linear least squares, regularisation. Applications of the theory to data science and machine learning will be developed.
##### Course Staff

Course Coordinator: Dr John Maclean

##### Course Timetable

The full timetable of all activities for this course can be accessed from Course Planner.

• Learning Outcomes
##### Course Learning Outcomes
On successful completion of this course students will be able to:

1. Explain basic mathematical concepts in data science, relating to linear algebra, probability, and calculus.
2. Employ methods related to these concepts in a variety of data science applications.
3. Apply logical thinking to problem-solving in context.
4. Demonstrate skills in writing mathematics.

This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

University Graduate Attribute Course Learning Outcome(s)

Attribute 1: Deep discipline knowledge and intellectual breadth

Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.

1

Attribute 2: Creative and critical thinking, and problem solving

Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.

3

Attribute 3: Teamwork and communication skills

Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.

2,4
• Learning Resources
##### Online Learning
All resources for the course are contained within the MyUni Canvas pages.
• Learning & Teaching Activities
##### Learning & Teaching Modes

No information currently available.

No information currently available.

##### Learning Activities Summary

No information currently available.

• Assessment

The University's policy on Assessment for Coursework Programs is based on the following four principles:

1. Assessment must encourage and reinforce learning.
2. Assessment must enable robust and fair judgements about student performance.
3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
4. Assessment must maintain academic standards.

##### Assessment Summary
1: Quiz component: Due Start of weeks 2,3,4,5,6 Tuesday 11:59pm; 20%
2: Assignment: Due End of Week 4; 30%
3: Timed Assignment: Due End of Week 6; 50%
##### Assessment Detail

No information currently available.

##### Submission
All assessments are to be submitted through MyUni.

Grades for your performance in this course will be awarded in accordance with the following scheme:

M10 (Coursework Mark Scheme)
FNS   Fail No Submission
F 1-49 Fail
P 50-64 Pass
C 65-74 Credit
D 75-84 Distinction
HD 85-100 High Distinction
CN   Continuing
NFE   No Formal Examination
RP   Result Pending

Further details of the grades/results can be obtained from Examinations.

Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

Final results for this course will be made available through Access Adelaide.

• Student Feedback

The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

• Student Support

Counselling for Fully Online Postgraduate Students

Fully online students can access counselling services here:

SMS service: 0439 449 876 (24/7)

Go to the Study Smart Hub to learn more, or speak to your Student Success Advisor (SSA) on 1300 296 648 (Monday to Thursday, 8.30am–5pm ACST/ACDT, Friday, 8.30am–4.30pm ACST/ACDT)

• Policies & Guidelines
• Fraud Awareness

Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's studentâ€™s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.

```
```