CIVILENG 2004 - Introduction to Geo-engineering

North Terrace Campus - Semester 1 - 2024

The course provides an understanding of: the introduction to earth processes; the nature of soils and their variability; and the state and behaviour of a soil. Topics include: Introduction to Earth Processes: How the Earth Works/Plate Tectonics, Minerals, Rocks and Weathering, Structural Geology and Earthquakes; The Origin and Composition of Soils: introduction to geotechnical engineering, processes that form soils, clay mineralogy; phase relationships, Atterberg limits and soil classification: soil state definitions, phase relationships, grain size analyses, Atterberg limits, soil classification and description; Soil Improvement: Compaction - concepts, measurement and field techniques, Overview of other soil improvement techniques; vertical stress in soils: soil suction, total vertical stress, pore water pressure, effective vertical stress; flow of water through soils: water flow, permeability, consolidation: introduction to consolidation theory, oedometer test, overconsolidation ratio, consolidation settlement, strength of soils: shear strength of sands and clays, Mohr-Coulomb failure criterion, direct shear test, triaxial test.

  • General Course Information
    Course Details
    Course Code CIVILENG 2004
    Course Introduction to Geo-engineering
    Coordinating Unit Civil Engineering
    Term Semester 1
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 4 Hours per week
    Available for Study Abroad and Exchange Y
    Assumed Knowledge CEME 1004 or CIVILENG 1004 or C&ENVENG 1010, CEME 2001 or CIVILENG 2001 or C&ENVENG 2025, MATHS 1011, MATHS 1012
    Assessment Exams, coursework
    Course Staff

    Course Coordinator: Dr Brendan Scott

    Dr Brendan Scott, Course Coordinator and Instructor (Geotechnical Engineering)
    Office: N154, Level 1, Engineering North Building

    Dr Jack Mulder
    , Instructor (Geology)
    Office: G11c, Mawson Building

    Dr Adam Abersteiner,
    Instructor (Geology)
    Office: G11a, Mawson Building

    Dr Jarred Lloyd, 
    Instructor (Geology)
    Office: G41a, Mawson Building

    Dr Issa Kousa
    , Geotechnical Practicals Coordinator
    Office: N230, Level 2, Engineering North Building
    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

    A weekly timetable will be available to students through MyUni.
  • Learning Outcomes
    Course Learning Outcomes
    On successful completion of this course students will be able to:
    1 Explain earth processes and identify rocks;
    2 Explain the different types of soil and their engineering properties;
    3 Describe and classify soils;
    4 Explain soil compaction and calculate ground improvement;
    5 Examine the concept of effective stress and calculate its influence on soil behaviour;
    6 Explain and calculate the influence of water flow on the engineering behaviour of soils;
    7 Explain and calculate the compressibility of soils and load-induced ground settlement;
    8 Examine and calculate the shear strength of soils;
    9 Interpret and use experimental data; and
    10 Report the results of laboratory experiments to a professional standard.
    The above course learning outcomes are aligned with the Engineers Australia Entry to Practice Competency Standard for the Professional Engineer. The course develops the following EA Elements of Competency to levels of introductory (A), intermediate (B), advanced (C):  

    B B A B B B A A A A
    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)

    Attribute 1: Deep discipline knowledge and intellectual breadth

    Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.


    Attribute 2: Creative and critical thinking, and problem solving

    Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.


    Attribute 3: Teamwork and communication skills

    Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.


    Attribute 4: Professionalism and leadership readiness

    Graduates engage in professional behaviour and have the potential to be entrepreneurial and take leadership roles in their chosen occupations or careers and communities.


    Attribute 5: Intercultural and ethical competency

    Graduates are responsible and effective global citizens whose personal values and practices are consistent with their roles as responsible members of society.


    Attribute 8: Self-awareness and emotional intelligence

    Graduates are self-aware and reflective; they are flexible and resilient and have the capacity to accept and give constructive feedback; they act with integrity and take responsibility for their actions.

  • Learning Resources
    Required Resources
    Lecture notes and other relevant learning resources, such as copies of PowerPoint slides and audio recordings of lectures, will be made available to students, at no cost, via MyUni.
    Recommended Resources
    References for additional resources are provided in the lecture notes.
    Online Learning
    MyUni will be used to disseminate learning resources and information relevant to the course.  Online learning modules will be used to assist your preparation for laboratory experiments and these are available on MyUni.  In addition, the MyUni Discussion Boards, online Quizzes and Grade Centre will also be utilised in this course.
  • Learning & Teaching Activities
    Learning & Teaching Modes

    The course will be delivered in the format of lectures and interactive learning modules supported by problem-solving tutorials and assignments. In addition, laboratory classes will be used to develop skills in identification of rock & minerals and the determination of soil index properties (i.e. particle size distribution, Atterberg limits, and compaction).


    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    Activity Contact Hours Independent Study Hours Total
    Lecture modules/recordings 0 24 24
    Workshops 18 0 18
    Practicals: Rocks Identification 9 18 27
    Practicals: Soil Index Properties 3 6 (per person) 9
    Assignments 0 15 15
    Rock and Mineral ID test 2 10 12
    Exam Preparation 0 45 45
    Exam 1: Earth Processes 1 0 1
    Exam 2: Geotechnical Engineering 3 0 3
    Total 36 118 154
    Learning Activities Summary
    This course explores the following topics:
    • Earth Processes
      The formation of rocks, rock types, minerals, earth's structure and earthquakes;
    • Origin and Composition of Soils
      The formation and constituents of soils, soil structure and charactierstics;
    • Phase Relationships and Soil Classification
      The effects of water on soils, purposes of classifying soils, and the method used to classify a soil;
    • Soil Improvement
      Equipment used for soil compaction, factors affecting soil compaction, and soil improvement methods used in the field;
    • Vertical Stress in Soils
      Types of stresses in the ground, the importance of water to stress in soil, and the methods used to determine stresses;
    • One-Dimensional Flow of Water Through Soils
      The causes for flow of water through soils, hydraulic conductivity and its determination, effects of water flow on soils, and water flow related disasters (liquefaction and quick condition);
    • Compressibility and Consolidation of Soils
      The causes of load-induced ground settlement, laboratory tests used to predict settlement, and calculation of load-induced ground settlement;
    • Strength of Soils
      The importance of soil shear strength, factors affecting shear strength, laboratory tests used to determine soil shear strength, and soil failure assessment.
    These topics are delivered in the context of a set of integrated learning units designed to motivate students to attain learning outcomes of this course. The learning activity details are provided on MyUni.
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment Task Task Type Individual / Group Due* Weighting Hurdle Criteria Learning Outcome
    Practical: Rocks Identification Formative & Summative Individual Week 6 15% 1, 9, 10
    Practicals: Soil Properties** Formative & Summative Group Weeks 7 - 13 10% 9, 10
    Assignments Formative Individual Weeks 5 - 13 15% 2 - 8
    Exam 1:  Earth Processes Summative Individual Week 4 15% 1
    Exam 2:  Geotechnical Engineering Summative Individual Exam period 45% 40% min 2 - 8

    * The specific due date for each assessment task will be available on MyUni.

    ** Please ensure that you have enrolled in the laboratory classes.
    This assessment breakdown complies with the University's Assessment for Coursework Programs Policy.
    This course has a hurdle requirement. Meeting the specified hurdle criteria is a requirement for passing the course.
    Assessment Detail

    No information currently available.


    No information currently available.

    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy ( course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.