Professor Amanda Page

Professor Amanda Page
 Position Senior Research Fellow
 Org Unit Medical Specialties
 Email amanda.page@adelaide.edu.au
 Telephone +61 8 8128 4840
 Location Floor/Room 7 ,  SAHMRI ,   North Terrace
  • Biography/ Background

    Prof Amanda page has established herself as a leading authority on vagal innervation of the gut, and how this relates to major disease states including obesity and gastro-oesophageal reflux disease. This has involved pioneering studies on the phenotypic specialisation of vagal sensory endings and a classification of gastrointestinal sensory nerves that has been adopted world-wide. One of her major findings, that GABAB receptor agonists inhibit peripheral gastro-oesophageal vagal afferent endings, prompted 2 full scale drug development programs and the production of 5 patents. Investigation of the effects of different nutritional states (e.g food restriction and excess) on these afferents has resulted in major contributions in the understanding of gastric satiety signalling.

  • Research Funding

    See the research profile at: adelaide.edu.au/profile/amanda.page

     

     

  • Publications

     

    Journal articles

    1. Vials AJ & Burnstock G. Effects of nitric oxide synthase inhibitors, L-NG-nitroarginine and L-NG-nitroarginine methyl esther, on responses to vasodilators of the guinea-pig coronary vasculature. British Journal of Pharmacology 1992; 107: 604-609.

    2. Vials AJ & Burnstock G. A2-purinoceptor-mediated relaxation in the guinea-pig coronary vasculature: A role for nitric oxide. British Journal of Pharmacology 1993; 109: 424-429.

    3. Vials AJ & Burnstock G. Effects of pyrimidines on the guinea-pig coronary vasculature. British Journal of Pharmacology 1993; 110: 1091-1097.

    4. Vials AJ & Burnstock G. The effects of suramin on relaxant vasodilator responses to ATP and 2-methylthioATP in the sprague-Dawley rat coronary vasculature. European Journal of Pharmacology 1994; 251: 299-302.

    5. Vials AJ & Burnstock G. Differential effects of ATP- and 2-methylthioATP-induced relaxation in guinea-pig coronary vasculature. Journal of Cardiovascular Pharmacology 1994; 23: 757-764.

    6. Vials AJ & Burnstock G.ATP release from the isolated perfused guinea-pig heart in response to increased flow. Journal of Vascular Research 1996; 33: 1-4.

    7. Stones RW, Vials AJ, Milner P, Beard RW & Burnstock G. Release of vasoactive agents from the isolated perfused human ovary. European Journal of Obstetrics and Gynaecology and Reproductive Biology 1996; 67: 191-196.

    8. Vials AJ, Crowe R & Burnstock G. A neuromodulatory role for neuronal nitric oxide in the rabbit renal artery. British Journal of Pharmacology 1997; 121: 213-220.

    9. Page AJ & Blackshaw LA. An in vitro study of the properties of vagal afferent fibres innervating the ferret oesophagus and stomach. Journal of Physiology 1998; 512: 907-916.

    10. Smid SD, Page AJ, O’Donnell T, Langman J, Rowland R & Blackshaw LA. Oesophagitis-induced changes in capsaicin-sensitive tachykininergic pathways in the ferret lower oesophageal sphincter. Neurogastroenterology & Motility 1998; 10: 403-411.

    11. Page AJ & Blackshaw LA. GABAB receptors inhibit mechanosensitivity of primary afferent endings. Journal of Neuroscience 1999; 19: 8597-8602.

    12. Blackshaw LA, Page AJ & Partosoedarso ER. Acute effects of capsaicin on gastrointestinal vagal afferents. Neuroscience 2000; 279; 157-162.

    13. Blackshaw LA, Page AJ, Smid S, Dent J, and Lehmann A. GABAB receptors – peripheral and central targets for controlling gastro-oesophageal reflux. Current Opinion in Central and Peripheral Nervous System Investigational Drugs 2000; 2: 333-343.

    14. Page AJ, O’Donnell T & Blackshaw LA. P2X receptor-induced sensitization of vagal mechanoreceptors in oesophageal inflammation. Journal of Physiology 2000; 523: 403-411.

    15. Page AJ, Martin CM & Blackshaw LA. Vagal mechanoreceptors and chemoreceptors in mouse stomach and esophagus. Journal of Neurophysiology 2002; 87: 2095-2103.

    16. Page AJ, Brierley SM, Martin CM, Martinez-Salgado C, Wemmie JA, Brennan TJ, Symonds E, Omari T, Lewin GR, Welsh MJ, Blackshaw LA. The ion channel ASIC1 contributes to visceral but not cutaneous mechanoreceptor function. Gastroenterology 2004; 127:1739-47.

    17. Page AJ, Young RL, Martin CM, Umaerus M, O'Donnell TA, Cooper NJ, Coldwell JR, Hulander M, Mattsson JP, Lehmann A and Blackshaw LA. Metabotropic glutamate receptors inhibit mechanosensitivity in vagal sensory neurons. Gastroenterology 2005; 128:402-410.

    18. Page AJ, Slattery JA, O'Donnell TA, Cooper NJ, Young RL and Blackshaw LA. Modulation of gastro-oesophageal vagal afferents by galanin in mouse and ferret. Journal of Physiology 2005; 563:809-819.

    19. Page AJ, Brierley SM, Martin CM, Price MP, Symonds E, Butler R, Wemmie JA, Blackshaw LA. Different contributions of ASIC channels 1a, 2 and 3 in gastrointestinal mechanosensory function. Gut 2005; 54:1408-1415.

    20. Page AJ, O’Donnell & Blackshaw LA.  Inhibition of mechanosensitivity in visceral primary afferents by GABAB receptors involves calcium and potassium channels. Neuroscience 2006; 137(2): 627-36.

    21. Slattery JA, Page AJ, Dorian C, Brierley S & Blackshaw LA. Potentiation of vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors. Journal of Physiology 2006; 577: 295-306.

    22. Young RL, Page AJ, Cooper NJ & Blackshaw LA. Peripheral vs central modulation of gastric vagal pathways by mGluR5. American Journal of Physiology 2007; 292: G501-511

    23. Page AJ, Slattery JA, Milte C, Laker R, O’Donnell TA, Brierley SM, Dorian CL & Blackshaw LA. Ghrelin selectively reduces mechanosensitivity of upper gastrointestinal vagal afferents. American Journal of Physiology 2007; 292: G1376-1384

    24. Page AJ, Brierley SM, Martin CM & Blackshaw LA. Acid sensing ion channels required for inhibition of afferent mechanosensitivity by benzamil. Pain 2007; 133: 150-160

    25. Page AJ, Slattery JA, Brierley SM, Jacoby AS & Blackshaw LA. Involvement of galanin receptors 1 and 2 in the modulation of mouse vagal afferent mechanosensitivity. Journal of Physiology 2007; 583: 675-684

    26. Brierley SM, Page AJ, Hughes PA, Adam, B, Liebregts T, Cooper NJ, Holtmann G, Liedtke W & Blackshaw LA. A selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 2008; 134: 2059-2069

    27. Page AJ, O’Donnell TA & Blackshaw LA. Opioid modulation of ferret vagal afferent mechanosensitivity. American Journal of Physiology 2008; 294: G963-970

    28. Page AJ, O’Donnell TA, Cooper NJ, Young RL & Blackshaw LA. Nitric oxide as an endogenous peripheral modulator of visceral sensory neuronal function. Journal of Neuroscience 2009; 29: 7246-7255.

    29. Brierley SM, Hughes PA, Page AJ, Kwan KY, Martin CM, O’Donnell TA, Cooper NJ, Harrington AM, Adam, B, Liebregts T, Holtmann G, Corey DP, Rychkov GY & Blackshaw LA. The ion channel TRPA1is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 2009; 137: 2084-2095.

    30. Lehmann A, Antonsson M, Holmberg AA, Blackshaw LA, Branden L, Brauner-Osborne H, Christiansen B, Dent J, Elebring T, Jacobson BM, Jensen J, Mattsson JP, Nilsson K, Oja SS, Page AJ, Saransaari P & von Unge S. (R)-(3-amino-2fluoropropyl) phosphonic acid (AZ3355), a novel GABAB receptor agonist, inhibits transient lower esophageal sphincter relaxation through a peripheral mode of action. Journal of Pharmacology and Experimental Therapeutics 2009; 331: 504-512.

    31. Young RL, Page AJ, Cooper NJ, Frisby CL & Blackshaw LA. Sensory and motor innervation of the crural diaphragm by the vagus nerves. Gastroenterology 2010; 138: 1091-1101.

    32. Brierley SM, Castro J, Harrington AM, Hughes PA, Page AJ, Rychkov GY & Blackshaw LA. TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. Journal of Physiology 2011; 589: 3575-3593.

    33. Kentish S, Li H, Philp LK, O’Donnell TA, Isaacs NJ, Young RL, Wittert GA, Blackshaw LA & Page AJ Diet-induced adaptation of vagal afferent function. Journal of Physiology 2012; 590: 209-11.

    34. Kentish SJ, O’Donnell TA, Isaacs NJ, Young RL, Li H, Harrington AM, Brierley SM, Wittert GA, Blackshaw LA & Page AJ Gastric vagal afferent modulation by leptin is influenced by food intake status. Journal of Physiology 2013; 591: 1921-34.

    35. Kentish SJ, Wittert GA, Blackshaw LA & Page AJ A chronic high fat diet alters the homologous and heterologous control of appetite regulating peptide receptor expression. Peptides 2013; 46: 150-8.

    36. Li H, Kentish SJ, Kritas S, Young, RL, Isaacs NJ, O’Donnell TA, Blackshaw, LA, Wittert GA & Page AJ Modulation of murine gastric vagal afferent mechanosensitivity by neuropeptide W Acta Physiologica 2013; 209: 179-91.

    37. Kentish SJ, Frisby CL, Kennaway DJ, Wittert GA & Page AJ Circadian variation in gastric vagal afferent mechanosensitivity. Journal of Neuroscience 2013; 33: 19238-42.

    38. Kentish SJ, O’Donnell TA, Frisby CL, Li H, Wittert GA & Page AJ Altered gastric vagal mechanosensitivity in diet-induced obesity persists on return to a normal chow and is accompanied by increased food intake. International Journal of Obesity 2014; 38: 636-42.

    39. Li H, Feinle-Bisset C, Frisby CL, Kentish SJ, Wittert GA & Page AJ Gastric neuropeptide W is regulated by meal-related nutrients. Peptides 2014; 62: 6-14.

    40. Kentish SJ, O’Donnell TA, Wittert GA & Page AJ Diet-dependent modulation of gastro-oesophageal vagal afferent mechanosensitivity by endogenous nitric oxide. Journal of Physiology 2014; 592: 3287-301.

    41. Symonds EL, Peiris M, Page AJ, Chia B, Dogra H, Masding A, Galanakis V, Atiba M, Bulmer D, Young RL & Blackshaw LA Mechanisms of activation of mouse and human enteroendocrine cells by nutrients. Gut 2015; 64: 618-26.

    42. Kentish SJ, Ratcliff K, Li H, Wittert GA & Page AJ High fat diet induced changes in gastric vagal afferent response to adiponectin. Physiology and Behavior 2015; 152: 354-62.

    43. Li H, Frisby CL, O’Donnell TA, Kentish SJ, Wittert GA & Page AJ Neuropeptide W modulation of gastric vagal afferent mechanosensitivity: Impact of age and sex. Peptides 2015; 71: 11-8.

    44. Kentish SJ, Frisby CL, Kritas S, Li H, Hatzinikolas G, O’Donnell TA, Wittert GA & Page AJ TRPV1 channels and gastric vagal afferent signalling in lean and high fat diet induced obese mice. PLoS One 2015; 10:e0135892.

    45. Kentish SJ, Vincent AD, Kennaway DJ, Wittert GA & Page AJ High fat diet-induced obesity ablates gastric vagal afferent circadian rhythms. Journal of Neuroscience 2016 ;36: 3199-207.

    46. Wilson CH, Nikolic A, Kentish SJ, Shalini S, Hatzinikolas G, Page AJ, Dorstan L & Kumar S Sex-specific alterations in glucose homeostasis and metabolic parameters during aging of Caspase-2-deficient mice. Cell Death Discovery 2016; doi:10.1038/cddiscovery.2016.9

    47.  Kentish SJ, Li H, Frisby CL & Page AJ Nesfatin-1 modulates gastric vagal afferent mechanosensitivity in a nutritional state dependent manner. Peptides 2017; 89: 35-41.

    48. Shi Z, Riley M, Taylor A & Page AJ Chilli consumption and the incidence of overweight and obesity in a Chinese adult population. International Journal of Obesity 2017; 41: 1074-79.

    49. Wilson CL, Nikolic A, Davies SJ, Kentish, SJ, Vincent A, Keller M, Hatzinikolas G, Dorstyn  L, Page AJ* & Kumar S* (* Joint senior author) Caspase-2 deficiency enhances whole-body carbohydrate utilisation and prevents high-fat diet induced obesity. Cell Death and Disease 2017; 8: e3136. doi: 10.1038/cddis.2017.518.

    50. Kentish SJ, Hatzinikolas G, Li H, Frisby CA, Wittert GA & Page AJ. Time restricted feeding prevents ablation of circadian rhythms in gastric vagal afferent mechanosensitivity observed in high fat diet-induced obese mice. Journal of Neuroscience 2018; 38: 5088-95.

    51. Singendonk M, Kritas S, Omari T, Feinle-Bisset C, Page AJ, Frisby CL, Kentish SJ,  Ferris L, McCall L, Kow L, Chisholm J & Khurana S. Upper Gastrointestinal Function in Morbidly Obese Adolescents before and 6 Months after Gastric Banding. Obesity Surgery 2018; 28: 1277-1288..

    52. Wells R, Elliott AD, Mahajan R, Page AJ, Iodice V, Sanders P & Lau DH. Efficacy of Therapies for Postural Tachycardia Syndrome: A Systematic Review. Mayo Clin Proc 2018; 93: 1043-1053.

    53.  Shi Z, Riley M, Brown A & Page AJ. Chilli intake is inversely associated with hypertension among adults. Clinical Nutrition ESPEN 2018; 23: 67-72.

    54. Li H, Kentish SJ, Wittert GA & Page AJ. Apelin modulates murine gastric vagal afferent mechanosensitivity. Physiol Behav 2018; 194: 466-473.

    55. Christie S, Vincent AD, Li H, Frisby CL, Kentish SJ, O’Rielly R, Wittert GA & Page AJ. A rotating light cycle promotes weight gain and hepatic lipid storage in mice. Am J Physiol  2018; doi: 10.1152/ajpgi.00020.2018.

     

    Review

     

    1. Blackshaw LA, Page AJ, Smid S, Dent J, Lehmann A GABAB receptors – peripheral and central targets for controlling gastro-oesophageal reflux. Current Opinion in Central and Peripheral Nervous System Investigational Drugs 2000; 2: 333-343. (Invited)

    2. Blackshaw LA, Page AJ & Young RL Metabotropic glutamate receptors as novel therapeutic targets on visceral afferents. Frontiers in Neuroscience 2011; 24: 1-7. (Invited)

    3. Page AJ, Symonds E, Peiris M, Blackshaw LA, Young RL Peripheral neural targets in obesity. British Journal of Pharmacology 2012; 166: 1537 -1558. (Invited)

    4. Kentish SJ & Page AJ Plasticity of gastrointestinal vagal afferent endings. Physiology and Behavior 2014; 136: 170-8. (Invited)

    5. Kentish SJ & Page AJ The role of gastrointestinal vagal afferent fibres in obesity. Journal of Physiology 2015; 593: 775-86. (Invited)

    6. Page AJ & Kentish SJ Plasticity of gastrointestinal vagal afferent satiety signals. Neurogastroenterology and Motility  2016; doi: 10.1111/nmo.12973. (Invited)

    7. Wells R, Spurrier AJ, Linz D, Gallagher C, Mahajan R, Sanders P, Page AJ & Lau, DH. Postural Tachycardia Syndrome: Current Perspectives. Vascular Health and Risk 2017; 14: 1-11.

    8. Li H, Kentish SJ, Wittert GA & Page AJ The role of neuropeptide W in energy homeostasis. Acta Physiol 2018; 222. doi: 10.1111/apha.12884.

    9. Page AJ & Li H. Meal-sensing signalling pathways in functional dyspepsia. Front Syst Neurosci 2018; 12: 10. doi: 10.3389/fnsys.2018.00010.

    10. Christie S, Wittert GA & Page AJ. Involvement of TRPV1 channels in energy homeostasis. Front Endocrinol 2018; 9: 420. doi: 10.3389/fendo.2018.00420.

    Books/Chapters

    1. Page AJ & Blackshaw LA The nature of esophageal pain receptors. In: Esophageal Pain. Ed. Dr R.K. Mittal. Plural publishing Inc. (2009) 27-39.

    2. Page AJ & Blackshaw LA Roles of gastro-oesophageal afferents in the mechanisms and symptoms of reflux disease. In: Handbook of experimental Pharmacology: Pharmacology of Sensory Nerves. Eds Prof. D. Spina & Prof. B. Canning. Springer-Verlag Berlin Hiedelberg. (2009) 227-257.

    3. Page AJ & Li H. Gastrointestinal mechanosensory function in health and disease. In: Mechanobiology in Health and Disease. Ed. Verbruggen S. Elsevier. (2018) 377-414 (Invited).

     

    Editorial (Invited)

    1. Page AJ & Kentish SJ Vagal leptin signalling: A double agent in energy homeostasis? Molecular Metabolism 2014; 3: 593-4. (C:1;IF:5.36).

    2. Page AJ Mimecan: A newly identified adipokine and regulator of appetite. EBioMedicine 2015; 2: 1584-5.

    3. Page AJ Vagal afferent dysfunction in obesity: cause or effect. Journal of Physiology 2016; 594: 5-6.

     

     

     

     

     

     

  • Media Expertise

    CategoriesMedicine & Medical Research, Science & Technology
    Expertisevagal afferent; gastrointestinal tract; stomach; obesity; food intake; satiety; mechanosensitivity; vagal innervation of the stomach; leptin; ghrelin
    NotesMember of: Gastroenterological Society of Australia; American Gastroenterological Association; Society for the Study of Ingestive Behavior; Australian and New Zealand Obesity Society; The Australian Society for Medical Research. Serves on the editorial board of: American Journal of Physiology; Frontiers in Neuroscience.
    Mobile0413 984 257

The information in this directory is provided to support the academic, administrative and business activities of the University of Adelaide. To facilitate these activities, entries in the University Phone Directory are not limited to University employees. The use of information provided here for any other purpose, including the sending of unsolicited commercial material via email or any other electronic format, is strictly prohibited. The University reserves the right to recover all costs incurred in the event of breach of this policy.

Entry last updated: Sunday, 17 Nov 2019

To link to this page, please use the following URL:  https://www.adelaide.edu.au/directory/amanda.page