Professor Chun-Xia Zhao

Professor Chun-Xia Zhao
 Position Professor
 Org Unit School of Chemical Engineering and Advanced Materials
 Email chunxia.zhao@adelaide.edu.au
 Telephone +61 8 8313 7432
 Location Floor/Room N1 06 ,  Engineering North ,   North Terrace
  • Biography/ Background

    Professor Chun-Xia Zhao starts a Professor position in the School of Chemical Engineering and Advanced Materials at University of Adelaide in July 2021. She leads a research group focusing on bioinspired engineering, biomimetic nanomaterials and microfluidics for drug delivery and controlled release. Before joining UofA, She was a Group leader and an Australian Research Council (ARC) Future Fellow at Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ). She joined AIBN, UQ in early 2008 as a Postdoctoral Fellow after obtained her PhD degree in Zhejiang University.

    In 2011, Prof. Zhao was awarded an ARC Discovery project along with the Australian Postdoctoral Fellow as the sole investigator. In 2014, she was awarded the prestigious Australian Research Council Future Fellow. Her research in bio-inspired nanotechnology and microfluidics has attracted more than $7 M research funding since 2011, including six Australian Research Council projects as the lead CI or sole CI, Node leader and Program Leader of ARC Centre of Excellence, two national prestigious fellowship (Australian Postdoctoral Fellowship and Australian Research Council Future Fellowship), and 13 UQ grants. She visited Harvard University as Fellow of the School of Engineering and Applied Science (2014). In 2016, her research excellence was recognised by the UQ Foundation Research Excellence Award. She has been appointed as member of the 2019 ARC College of Experts (2019-2021).

    Prof. Zhao has contributed substantial high quality scientific papers in international top refereed journals such as Science Advances, Nature Comm, Angewandte Chemie International Edition, ACS Nano, Chemical Communications, Advanced Healthcare Materials, and so on. She has been focusing on innovative research, and has been active in patent application to transfer her research into practical applications, as evidenced by her six patents. One of her patents was licensed to an international company. She has built extensive collaborations with scientists at top universities such as Harvard University, Brown University, etc. She serves as the Editor-in-Chief, Editorial Board member for several journals.

  • Awards & Achievements

    Selected Honour and Awards

    2020

    Dean’s Commendation for Excellent Teaching Awards (Faculty of Science)

    2019-2021

    Australian Research Council College of Experts

    2019-2021

    UQ Strategic Fellowship (total 2 winners)

    2016

    UQ Foundation Research Excellence Award

    2014

    ARC Future Fellowship

    2012

    UQ Early Career Researcher Award (The University of Queensland)

    2011

    Australian Postdoctoral Fellowship (Australian Research Council)

    2010

    Chemical Engineering Science Top 20 reviewer of 2010, 2012

    2006

    Tang Yongqian Paper Scholarship

    2002

    SME Scholarship (National Scholarship)

    2000

    Excellent Graduate Student Scholarship (University scholarship)

    1999

    Baosteel Excellent Student Scholarship (National Scholarship, 10 for the whole university)

  • Research Interests

    The Zhao Group, led by Professor Zhao, focusses on the discovery and development of new knowledge and new approaches for making bio-inspired functional micro/nano materials based on biomimetic engineering and microfluidic technology for drug delivery and controlled release.

    The Group has developed facile and scalable methods for producing libraries of multifunctional materials (liposomes, polymeric nanoparticles and core-shell nanomaterials) for drug delivery and controlled release, and has been developing tumour-on-a-chip and organs-on-a-chip to evaluate these systems with the ultimate goal of accelerating their clinical translation. The Group has also been working with industry partners and collaborators to translate their patented technologies into commercial applications

    Current research funding and projects (available for PhD candidates)

    (1) ARC Discovery project: Precision-engineered hybrid core-shell materials

    The poor water solubility of many chemical actives hinders the development of new pharmaceutical, agricultural, food products. For example, 40% of approved drugs and 90% of drugs in development are water-insoluble. New methods are needed for more efficient formulation and delivery of these drugs. This research will develop new platform technologies for making hybrid core-shell materials with exceptionally high drug loading capacity and programmed drug release, delivering new technologies for the manufacture of high-value pharmaceutical products. The novel core-shell materials will enable more efficient delivery of hydrophobic ingredients, and place Australia at the forefront of nanotechnology and drug delivery research. The future applications of these materials in a wide variety of fields, such as pharmaceuticals (controlled release of drugs), and agriculture (sustained release of hydrophobic insecticides, plant protection agents and fertiliser) may lead in the longer term to considerable economic and social benefits.

    2. ARC Discovery Project: Mechanical modulation of particle-cell interactions

    Nano/microtechnology and material engineering hold enormous promise for Australia’s multibillion-dollar pharmaceutical industry. The convergence of nano/microtechnology, material engineering and cell manufacturing offers unique opportunities to develop novel particle-based artificial cell systems for activating immune cells (T cells) for cell production. Building on a recent breakthrough in engineering core-shell materials using designed biomolecules, the project aims to develop novel nano/micro particles with tunable stiffness, contribute new knowledge to the optimum design of artificial cells for various biological applications, and provide new design rules for engineering materials for cell production, shifting the paradigm of cell engineering. The new class of stiffness tunable particle system will provide technologically advanced materials for future applications in cell engineering and manufacturing. Project outcomes will expand Australia’s knowledge base in the area of bioengineering and biotechnology, and position Australia at the forefront of bionanotechnology.

    3. ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals

    Project 1 Development of novel bio-inspired biomolecules for controlling colloidal stability

    This project aims to design biomolecules (peptides and proteins) for controlling the stability of colloid particles. A series of biomolecules (peptides and proteins) will be designed to have different structures and surface activity. Peptides will be synthesised using chemical methods, while proteins will be expressed in E. Coli and produced using a simple chromatography-free separation method. The interactions between these designed biomolecules and colloid particles with different charge, size and hydrophobicity will be systematically studied using a variety of techniques including settling tests, depletion adsorption isotherms, turbidity measurements, atomic force microscopy, zeta-potential, dynamic light scattering and scanning electron microscopy. These designed biomolecules along with the fundamental understanding of their interactions with colloid particles will improve handling and processing of particles suspensions for various applications in mineral processing, water purification, wastewater and sewage treatment, etc.

    Project 2 Stimuli-responsive soft materials based on biomolecules

    This project aims to develop stimuli-responsive soft materials (foams and emulsions) using designed biomolecules (proteins and peptides). Peptides or proteins are informational polymers made up of amino acids and are increasingly viewed as key building blocks to achieve specific functions owing to their biocompatibility, sustainability, and ease of functionalization, coupled with facile methods for their economic manufacture. Enabled by the diversity of the 20 naturally occurring amino acids, there is a large sequence and structural solution space for design. This work aims to explore the functionality of using biomolecules to stabilise foams or emulsions, and the potential for switching that functionality based on different switching mechanisms. This study seeks to develop the functionality offered by biomolecules such as peptides or proteins that change conformation when adsorbed to an interface in controlling the nature of foams, emulsions, and flocculated suspensions. The designed biomolecules as well as the developed soft materials have great potential in a wide range of applications in mineral processing, pharmaceuticals, food industry, agriculture, etc.

    PhD student scholarships are available for these projects. Please contact Prof. Chun-Xia Zhao for more information at Chunxia.zhao@adelaide.edu.au

  • Research Funding

    Prof. Zhao has attracted more than $7M research funding since 2011 including 7 ARC grants.

     

    ARC funding

    2021-2023

    Chun-Xia Zhao, ARC Discovery project, DP210103079. Mechanical modulation of particle-cell interactions

    2020-2022

    Chun-Xia Zhao, ARC Discovery project DP200101238. Precision-engineered hybrid core-shell materials 

    2020-2026

    ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals $35 M for 7 years. (UQ Node Director, Leader of the Research Program 3)

    2015-2019

    Chun-Xia Zhao. ARC Future Fellowship FT140100726. Platform technologies for multifunctional nanocarrier systems (150 recipients in 2014 round)

    2015-2018

    Chun-Xia Zhao, Anton Middelberg, Zhengzhong Shao (PI). ARC Discovery Project DP150100798. Next generation core-shell materials based on biomolecular dual-templating.

    2015-2018

    Chun-Xia Zhao, Prof. Nikolai Petrovsky (PI). ARC Linkage Project LP140100424. Engineering improved technology for nanoparticle-based adjuvant manufacture. (Research partner: Vaxine, Pty Ltd ) 

    2011-2014

    Chun-Xia Zhao, ARC Discovery Project DP110100394 (along with the awarding of APD). Engineered nanoporous materials and composites having hierarchical structures by emulsion templating. 

  • Publications

    Featured articles
    Prof. Zhao has published more than 100 research articles in leading journals including:
    1. Guangze Yang, Yun Liu, Yue Hui, Tengjisi, Dong Chen,  David A. Weitz,  Chun-Xia Zhao*. Implications of Quenching to Dequenching Switch in Quantitative Cell Uptake and Biodistribution of Dye‐Labeled Nanoparticles. Angewandte Chemie International Edition, 2021 https://doi.org/10.1002/anie.202101730
    2. Baiheng Wu, Zhu Sun, Jiangchao Wu, Jian Ruan, Peng Zhao, Kai Liu, Chun-Xia Zhao, Jianpeng Sheng, Tingbo Liang  and Dong Chen (2021). Nanoparticle-stabilized oxygen microcapsules prepared by interfacial polymerization for enhanced oxygen delivery. Angewandte Chemie (International Edition). doi: 10.1002/anie.202100752
    3. Yue Hui, Xin Yi, David Wibowo, Guangze Yang, Anton P.J. Middelberg, Huajian Gao, and Chun-Xia Zhao*. Nanoparticle elasticity regulates phagocytosis and cancer cell uptake, Science Advances, 2021, DOI 10.1126/sciadv.aaz4316
    4. Yun Liu, Guangze Yang, Thejus Baby, Tengjisi, Dong Chen, David A. Weitz, Chun-Xia Zhao*. Stable polymer nanoparticles with exceptionally high drug loading by sequential nanoprecipitation. Angewandte Chemie International Edition, 2020, 59, 4720-4728 https://doi.org/10.1002/anie.201913539. (Published as hot paper)
    5. Lingfei Lu, Benhao Li, Suwan Ding, Yong Fan, Shangfeng Wang, Caixia Sun, Mengyao Zhao, Chun-Xia Zhao and Fan Zhang. NIR-II Bioluminescence for in Vivo High Contrast Imaging and in Situ ATP-Mediated Metastases Tracing. Nature Communications, 2020 11, 4192
    6. Yun Liu  Guangze Yang  Song Jin  Run Zhang  Peng Chen  Tengjisi  Lianzhou Wang  Dong Chen  David A. Weitz  Chun-Xia Zhao*. J‐Aggregate‐Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. Angewandte Chemie International Edition, 2020, 59,2–12
    7. Guangze Yang,  Yun Liu,  Haofei Wang,  Russell Wilson,  Yue Hui,  Alice Yu,  David Wibowo,  Cheng Zhang, Andrew Whittaker,  Anton Middelberg,  Chun-Xia Zhao*. Bioinspired Core‐Shell Nanoparticles for Hydrophobic Drug Delivery. Angewandte Chemie International Edition, 2019, https://doi.org/10.1002/anie.201908357.
    8. Yue Hui, Xin Yi, Fei Hou, David Wibowo, Fan Zhang, Dongyuan Zhao, Huajian Gao and Chun-Xia Zhao*. Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery. ACS Nano, 2019, doi:10.1021/acsnano.9b03924 (Invited review)
    9. Rui Ran, Hao-Fei Wang, Fei Hou, Yun Liu, Yue Hui, Nikolai Petrovsky, Fan Zhang and Chun-Xia Zhao*. A Microfluidic Tumor-on-a-Chip for Assessing Multifunctional Liposomes’ Tumor Targeting and Anticancer Efficacy. Advanced Healthcare Materials. 2019, 8 (8), 1900015.
    10. Yun Liu, Yue Hui, Rui Ran, Guang-Ze Yang, David Wibowo, Hao-Fei Wang, Anton P. J. Middelberg, and Chun-Xia Zhao*. Synergetic Combinations of Dual-Targeting Ligands for Enhanced In Vitro and In Vivo Tumor Targeting. Advanced Healthcare Materials. 2018, 1800106
    11. Hao-Fei Wang, Rui Ran, Yun Liu, Yue Hui, Bijun Zeng, Dong Chen, David A. Weitz and Chun-Xia Zhao*. Tumor-Vasculature-on-a-Chip for Investigating Nanoparticle Extravasation and Tumor Accumulation. ACS Nano, 2018, 12 (11), pp 11600–11609. DOI: 10.1021/acsnano.8b06846
    12. Yue Hui, David Wibowo, Yun Liu, Rui Ran, Hao-Fei Wang, Seth Arjun, Anton P.J. Middelberg and Chun-Xia Zhao*. Understanding the Effects of Nanocapsular Mechanical Property on Passive and Active Tumor Targeting. ACS Nano, 2018, 12(3): 2846-2857. doi:10.1021/acsnano.8b00242
    13. Dong Chen, Esther Amstad, Chun-Xia Zhao, Liheng Cai, Jing Fan, Qiushui Chen, Mingtan Hai, Stephan Koehler, Huidan Zhang, Zhenzhong Yang and David A. Weitz. Biocompatible Amphiphilic Hydrogel-Solid Dimer Particles as Colloidal Surfactants. ACS Nano, 2017, 11 (12), pp 11978–11985
    14. Chun-Xia Zhao*. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Advanced Drug Delivery Reviews. 2013, 65: 1420-1446. (Invited review).
    15. Chun-Xia Zhao, Anton P.J. Middelberg. Microfluidic mass-transfer control for the simple formation of complex multiple emulsions. Angewandte Chemie International Edition, 2009, 48: 1-5.

     

The information in this directory is provided to support the academic, administrative and business activities of the University of Adelaide. To facilitate these activities, entries in the University Phone Directory are not limited to University employees. The use of information provided here for any other purpose, including the sending of unsolicited commercial material via email or any other electronic format, is strictly prohibited. The University reserves the right to recover all costs incurred in the event of breach of this policy.

Entry last updated: Tuesday, 6 Jul 2021

To link to this page, please use the following URL:  https://www.adelaide.edu.au/directory/chunxia.zhao